
EBAMRTools: EBChombo’s Adaptive Refinement

Library

P. Colella
D. T. Graves
T. J. Ligocki
D. Modiano

B. Van Straalen

Applied Numerical Algorithms Group
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, CA

June 28, 2001

Contents

1 Introduction 2

2 Notation 3

3 Conservative Averaging 3

4 Interpolation Operations 4

4.1 Piecewise Linear Interpolation . 4
4.2 Piecewise-Linear Coarse-Fine Boundary Interpolation 4
4.3 Quadratic Coarse-Fine Boundary Interpolation 5

4.3.1 Interpolation to non-corner ghost cells Ωe,f 6
4.3.2 Interpolation to corner ghost cells 8

5 Redistribution 8

5.1 Multilevel Redistribution Summary . 9
5.2 Coarse to Fine Redistribution . 9
5.3 Fine to Coarse Redistribution . 10

1

5.4 Coarse to Coarse Redistribution . 11

6 Refluxing 11

7 Subcycling in time with embedded boundaries 13

7.0.1 O(h3) Averaging . 15

8 EBAMRTools User Interface 16

8.1 Classes EBCoarseAverage/EBCoarsen 16
8.2 Class EBPWLFineInterp . 17
8.3 Class EBPWLFillPatch . 18
8.4 Class RedistStencil . 19
8.5 Class EBLevelRedist . 20
8.6 Class EBFluxRegister . 21
8.7 Class EBCoarToFineRedist . 24
8.8 Class EBFineToCoarRedist . 25
8.9 Class EBCoarToCoarRedist . 26
8.10 Class EBQuadCFInterp . 27

1 Introduction

This document is meant to discuss the different components of the EBAMRTools compo-
nent of the EBChombo infrastructure for embedded boundary, block-structured adaptive
mesh applications. The principal operations that these tools execute are as follows:

• Average a level’s worth of data onto the next coarser level.

• Interpolate in a piecewise-linear fashion data from a coarser level to a finer level.

• Fill ghost cells at a coarse-fine interface with a second-order interpolation between
the coarse and fine data.

• Fill ghost cells at a coarse-fine interface with data interpolated using a bilinear
interpolation.

• Preserve multi-level conservation using refluxing.

• Redistribute mass differences between stable and conservative schemes.

After a discourse on the notational difficulties of embedded boundaries, we will discuss
our algorithm for each of these tasks.

2

2 Notation

All these operations take place in a very similar context to that presented in [2]. For
non-embedded boundary notation, refer to that document. The standard (i, j, k) is not
sufficient here to denote a computational cell as there can be multiple VoFs per cell. We
define v to be the notation for a VoF and f to be a face. The function ind(v) produces
the cell which the VoF lives in. We define v+(f) to be the VoF on the high side of face f ;
v−(f) is the VoF on the low side of face f ; f+

d (v) is the set of faces on the high side
of VoF v; f−

d (v) is the set of faces on the low side of VoF v, where d ∈ {x, y, z} is a
coordinate direction (the number of directions is D). Also, we compose these operators
to represent the set of VoFs directly connected to a given VoF: v+d (v) = v+(f+

d (v)) and
v−
d (v) = v−(f−

d (v)). The << operator shifts data in the direction of the right hand
argument:

(φ << ed)v = φv+
d
(v) (1)

We follow the same approach in the EB case in defining multilevel data and operators
as we did for ordinary AMR. Given an AMR mesh hierarchy {Ωl}lmax

l=0 , we define the valid
VoFs on level l to be

V l
valid = ind−1(Ωl

valid) (2)

and composite cell-centered data

ϕcomp = {ϕl,valid}lmax
l=0 , ϕl,valid : V l

valid → R
m (3)

For face-centered data,

F l,d
valid = ind−1(Ωl,ed

valid)
~F l,valid = (F l,valid

0 , . . . , F
l,valid
D−1)

F
l,valid
d : F l,d

valid → R
m

(4)

3 Conservative Averaging

Assume that there are two levels of grids Ωc,Ωf , with data defined on the fine grid and
on the valid region of the coarse grid

ϕf : ind−1(Ωf) → Rϕc,valid : ind−1(Ωc
valid) → R (5)

We assume that Cr(Ω̃
f)∩ Γc ⊂ Ωc. We want to replace the coarse data which is covered

by fine data with the volume-weighted average of the fine data. This operator is used
to average from finer levels on to coarser levels, or for constructing averaged residuals in
multigrid iteration. We define the volume weighted average

ϕc
vc

= Av(ϕf , nref)vc

Av(ϕf) = 1
V c

∑

vf∈F

V fϕvf

F = C−1
nref

(vc)

(6)

3

4 Interpolation Operations

4.1 Piecewise Linear Interpolation

This method is primarily used to initialize fine grid data after regridding. Given a level
array ϕc on Ωc, we want to compute Ipwl(ϕ) defined on an Ωf properly nested in Ωc. For
the values on C(Ω̃f), interpolate in a piecewise-linear fashion in space, using the values ϕ̃c

(we assume that the coarse data already contains the average of the fine data as discussed
in the last section).

ϕf
vf

= ϕ̃c
vc

+
D−1
∑

d=0

(
(ind(vf)d+

1
2
)

nref
− ind(vc) +

1
2
))∆d · ϕc

vc

where vc ∈ ind
−1(Ω̃f − Ωf)

vc = Cnref
(vf).

(7)

The slopes ∆d are computed using minmod limiting as shown below:

∆dWvc
= δminmod(Wvc

)|δL(Wvc
)|δR(Wvc

)|0
δL(Wvc

) = Wvc
− (W n

v<<−ed
)

δR(Wvc
) = (W n

v<<ed
)−Wvc

(8)

δminmod =

{

min(|δL|, |δR|) · sign(δL + δR) if δL · δR > 0
0 otherwise

}

(9)

The shift operator (denoted by <<) is defined using a simple average of connected values.

4.2 Piecewise-Linear Coarse-Fine Boundary Interpolation

In the next algorithm, we use the same linear interpolant but we also interpolate in
time between levels of time. We have the solution on the coarser level of refinement
at two time levels, tCold and tCnew. We want to compute an extension ϕ̃f of ϕf on
Ω̃f = G(Ωf , p) ∩ Γf , p > 0 that exists at time level tF where tCold < tf < tCnew. We
assume that Cr(Ω̃

f) ∩ ΓcCΩc. Extend ϕc,valid to ϕc, defined on all of ind−1(Ωc).

ϕc
vc

= Av(ϕf , nref)vc
,vc ∈ ind

−1Cnref
(Ωf) (10)

At both tCold and tCnew, for the values on Ω̃f −Ωf compute a piecewise linear interpolant,
using the values ϕ̃c.

ϕ̃f
vf

= ϕ̃f
vc

+
D−1
∑

d=0

(
(ind(vf)d+

1
2
)

nref
− (ind(vc) +

1
2
))∆d · ϕc

vc

where vc ∈ ind
−1(Ω̃f − Ωf),

vc = Cnref
(vf).

(11)

4

The slopes ∆d are computed using minmod limiting as shown in equation 9. We then
interpolate in time between the new and old interpolated values.

ϕ
f
vf ,tF

= ϕ̃
f
vf ,tCold

+
tF − tCold

tCnew − tCold

(ϕ̃f
vf ,tCnew

− ϕ̃
f
vf ,tCold

) (12)

This process should produce an interpolated value which has second-order error in both
time and space.

4.3 Quadratic Coarse-Fine Boundary Interpolation

Away from locations where the embedded boundary crosses the coarse-fine interface, we
use the algorithm in [2].

To proceed from here we need to define the corner ghost cells region. Say we have
two levels of refinement. Define Ωf as that region covered by the finer level. Define Λf

to be the problem domain at the finest refinement. Define Gd to be the grow operation
that only grows a region in the coordinate direction d. Define the grow operator G to
be the operator which grows a region by one cell in all coordinate directions. In three
dimensions, this is

G(Ω, 1) ≡ G1(G2(G3(Ω, 1), 1), 1)

The coarse-fine layer of ghost Ωcf cells is defined to be

Ωcf,f = (G(Ωf , 1)− Ωf) ∩ Λf

The ghost cells which are not corners Ωe can be obtained by shifting Ωf along coordinate
directions:

Ωe, f = (
D
⋃

d=1

Gd(Ωf , 1)− Ωf) ∩ Λf

The corner ghost cells Ωp are defined to be

Ωp = Ωcf − Ωe

Define C to be the pointwise coarsening operation and r to be the refinement ratio. We
define the coarse-fine interface set on the coarse level Ωcf,c to be the coarse cells which
underly the fine ghost cells.

Ωcf,c = C(Ωcf,f , r)

Because of proper nesting requirements, we claim that Ωe,c = C(Ωe,f , r) and Ωp,c =
C(Ωc,f , r) do not intersect and Ωcf,c = Ωe,c ∩ Ωp,c.

We use the Johansen stencil for Dirichlet EB boundary conditions away from the
coarse-fine boundary. When any VoF of the Johansen stencil is within a ghost cell on
the coarse-fine interface, we drop to the least-squares stencil which has a smaller. The
least-squares stencil still requires corner ghost cells be filled. In the absence of coarse-fine
interfaces intersecting embedded boundaries, we only need to fill ghost cells which were
not corners Ωe. Since we are proposing to allow this intersection, we must interpolate to
all of Ωcf .

5

4.3.1 Interpolation to non-corner ghost cells Ωe,f

Away from points where the coarse-fine interface, we interpolate using QuadCFInterp. It
uses one-sided differences to avoid using coarse data under finer data. See the AMRTools
section of the Chombo design document for details. Though that is somewhat ideologically
inconsistent with the following strategy near embedded boundaries, we feel that, as a
proven technology, QuadCFInterp should be left alone.

This section deals only with quadratic interpolation near where the coarse-fine in-
terface crosses the embedded boundary design document. The functional change from
QuadCFInterp here is that we only need to do one-sided difference when covered cells are
near. Because we are doing higher-order averaging to fill coarse data that is under finer
data (see section 7.0.1), we can allow the coarse-fine interpolation stencil to reach under
finer grids.

We present the natural extension of the regular grid description to embedded bound-
aries of quadratic coarse-fine interpolation. For each coordinate direction d, we compute
values of φ in the set Ωe,f

d = (Gd(Ωf , 1) − Ωf) ∩ Λf . Define the “valid” parts of the
domain to be the parts of the domain whose volume fractions are greater than zero.

Ωc,valid
i = {i : i ∈ Ωc and κi > 0}

To perform this interpolation, we first observe that, given i ∈ Ω̃f
k − Ωf , there is a

unique choice of ± and d, such that i ∓ ed ∈ Ωf
k . Having specified that choice, the

interpolant is constructed in two steps

(i) Interpolation in the direction orthogonal to ed. We compute

x =
i+ 1

2
u

r
− (ic +

1

2
u)

where ic = Cr(i). The real-valued vector x is the displacement of the cell center i on the
fine grid from the cell center at ic on the coarse grid, scaled by hc.

ϕ̂i = ϕc
ic +

∑

d′ 6=d

[

(

xd′(D
1,d′ϕc)ic +

1

2
(xd′)

2(D2,d′ϕc)ic
)

+
∑

d′′ 6=d,d′′ 6=d′

xd′xd′′(D
d′d′′ϕc)ic

]

The second sum has only one term if D = 3, and no terms if D = 2.

(ii) Interpolation in the normal direction.

ϕ̃i = IBq (ϕ
f , ϕc,valid) ≡ 4a+ 2b+ c , x̃d = xd −

1

2
(r + 3)1

where a, b, c are computed to interpolate between the collinear data

((i±
1

2
(nl

ref − 1)ed)h, ϕ̂i),

((i∓ ed)h, ϕl
i∓ed

),

((i∓ 2ed)h, ϕl
i∓2ed)

6

In (i), the quantities D1,d′ϕc, D2,d′ϕc and Dd′d′′ϕc are difference approximations to
∂

∂xd′
, ∂2

∂x2
d′
, and ∂2

∂xd′∂xd′′
, respectively. D1,dϕ must be accurate to O(h2), while the other

two quantities need only be O(h). The strategy for computing these quantities is to
use only values in Ωc

valid to compute these difference approximations. For the case of
D1,d′ϕ,D2,d′ϕ, we use 3-point stencils, centered if possible, or shifted as required to
consist of points on Ωc

valid.

(D1,d′ϕ)i =











1
2
(ϕc

i+ed
′ − ϕc

i−ed
′) if both i± ed′ ∈ Ωc

valid

±3
2
(ϕc

i±ed
′ − ϕc

i)∓
1
2
(ϕc

i±2ed
′ − ϕc

i±ed
′) if i± ed′ ∈ Ωc

valid, i∓ ed′ 6∈ Ωc
valid

0 otherwise

(D2,d′ϕ)i =











ϕc
i+ed

′ − 2ϕc
i + ϕc

i−ed
′ if both i± ed′ ∈ Ωc

valid

ϕc
i − 2ϕc

i±ed
′ + ϕc

i±2ed
′ if i± ed′ ∈ Ωc

valid, i∓ ed′ 6∈ Ωc
valid

0 otherwise

x

x

Figure 1: Mixed-derivative approximation illustration. The upper-left corner is covered
by a finer level so the mixed derivative in the upper left (the uncircled x) has a stencil
which extends into the finer level. We therefore average the mixed derivatives centered on
the other corners (the filled circles) to approximate the mixed derivatives for coarse-fine
interpolation in three dimensions.

In the case of Dd′d′′ϕc, we use an average of all of the four-point difference approxi-
mations ∂2

∂xd′∂xd′′
centered at d′, d′′ corners adjacent to i such that all four points in the

stencil are in Ωc
valid (Figure 1)

(Dd′d′′

cornerϕ
c)i+ 1

2
ed

′
+ 1

2
ed

′′ =

{

1
h2 (ϕi+ed

′
+ed

′′ + ϕi − ϕi+ed
′ − ϕi+ed

′′) if [i, i+ ed′ + ed′′] ⊂ Ωc
valid

0 otherwise

7

(D2,d′d′′ϕc)i =

{

1
Nvalid

∑

s′=±1

∑

s′′=±1(D
d′d′′ϕc)i+ 1

2
s′ed

′
+ 1

2
s′′ed

′′ if Nvalid > 0

0 otherwise

where Nvalid is the number of nonzero summands. To compute (ii), we need to compute
the interpolation coefficients a b, and c.

a =
ϕ̂− (r · |xd|+ 2)ϕi∓ed + (r · |xd|+ 1)ϕi∓2ed

(r · |xd|+ 2)(r · |xd|+ 1)

b = ϕi∓ed − ϕi∓2ed − a

c = ϕi∓2ed

4.3.2 Interpolation to corner ghost cells

We now discuss how we fill data on Ωp,f the ghost cells over the coarse fine interface
which cannot be reached from a single move in a coordinate direction. Define D to be the
set of directions which have the requisite number of uncovered, single-valued cells from
a corner cell i. It is clear from the location of the corner which direction one needs to
extrapolate from.

Di = {d : κi±e > 0 and κi±2e > 0 and κi±3e > 0}

We also exclude from D any directions with a multivalued cell in the stencil. We define
ND to be the number of directions contained in D.

φi =
1

ND

∑

d∈D

3(φi±ed − φi±2ed) + φi±3ed

We must exercise some care here to ensure that our algorithm is independent of how we
divide our region into rectangles. For this reason, after we do the above extrapolation, we
do a cornerCopier exchange operation to fill corner cells that are covered by ghost cells
of a neighboring fine grid. Finally we do an ordinary exchange operation to fill any ghost
cells which are covered by the valid fine grid.

5 Redistribution

To preserve stability and conservation in embedded boundary calculations, we must redis-
tribute a quantity of mass δM (the difference between stable and conservative updates)
from irregular VoFs to their neighbors. This mass is normalized by hD where h is the
grid spacing on the level. We define ηv to be the set of neighbors (no farther away than
the redistribution radius) which can be reached by a monotonic path. We then assign
normalized weights to each of the neighbors v

′

and divide the mass accordingly:

δMv =
∑

v
′
∈ηv

wv,′κv
′δMv (13)

8

where
∑

v
′
∈ηv

wv,v
′κv

′ = 1 (14)

We then update the solution U at the neighboring cells v
′

U l
v
′ += wv,v

′δM l
v. (15)

This operation occurs at all v ∈ ind
−1(Ωl) without regard to valid or invalid regions.

If the irregular cell is within the redistribution radius of a coarse-fine interface, we must
account for mass that is redistributed across the interface.

5.1 Multilevel Redistribution Summary

We begin with δM l
v,v ∈ ind

−1Ωl, the redistribution mass for level l.
Define the redistribution radius to be Rr. We define the coarsening operator to be

CNref
and the refinement operator to be C−1

Nref
. We define the “growth” operator to

be G. The operator which produces the ZD index of a vof is ind and the operator to
produces the VoFs for points in ZD is ind−1.

If v is part of the valid region, the redistribution mass is divided into three parts,

δM l
v = δ1M l

v + δ2M l,l+1
v + δ2M l,l−1

v ,

v ∈ ind
−1(Ωl,valid).

(16)

δ1M l
v is the part of the mass which is put onto the Ωl,valid. δ2M l,l+1

v is the part of the
mass which is redistributed to Ωl ∩CNref

(Ωl+1) (the part of the level covered by the next
finer level). δM l,l−1

v is the part of the mass which is redistributed off level l.
If v is not part of the valid region, the redistribution mass is divided into two parts,

δM l
v = δIM l

v + δM l,l
v

v ∈ ind
−1(Ω− Ωl,valid).

(17)

δIM l
v is the portion of δlM l

v which is redistributed to other invalid VoFs of level l.
δIMP l, lv is the portion of δlM l

v which is redistributed to valid VoFs of level l and must
be removed later from the solution.

We must account for δM l,l−1
v , δ2M l,l+1

v and δ3M l,l
v to preserve conservation. δ2M l,l+1

v

is added to the level l + 1 solution. δ2M l,l−1
v is added to the level l − 1 solution. δ3M l,l

v

is removed from the level l solution.

5.2 Coarse to Fine Redistribution

The mass going from coarse to fine is accounted for as follows. Recall that the mass we
store is normalized by hD

c where hc is the grid spacing of the level of the source. Define hf

9

to be the grid spacing of the destination. For all VoFs vc ∈ ind
−1(CNref

(G(Ωl+1, Rr)−
Ωl+1)), we define the coarse-to-fine redistribution mass δ2M l,l+1 to be

δ2M l,l+1
vc

=
∑

v′

c∈S(vc)

δM l
vc
wvc,v

′

c
κv′

c

S(vc) = ηvc
∩ ind

−1(CNref
(Ωl+1)).

(18)

Define ζ2
v′

c
to be the unnormalized mass that goes to VoF v′

c
. We distribute this mass to

the VoFs v′

f
that cover v′

c
(v′

f
∈ C−1

Nref
(v′

c
)) in a volume-weighted fashion.

ζ2
v′

c
= hD

c wvc,v
′

c
κv′

c
δM l

vc

ζ2
v′

f
=

κ
v′
f
hD
f

κchD
c
ζ2
v′

c

ζ2
v′

f
= κv′

f
hD
f wvc,v

′

c
δM l

vc

(19)

The change in the fine solution is the given by

δU l+1
v′

f
=

ζ2
v′
f

κ
v′
f
hD
f

= δM l
vc
wvc,v

′

c

U l+1
v′

f
+= δM l

vc
wvc,v

′

c

vc ∈ ind
−1(CNref

(G(Ωl+1, Rr)− Ωl+1))
v′

c
= ηvc

∩ ind
−1(CNref

(Ωl+1))
v′

f
∈ C−1

Nref
(v′

c
)

(20)

This can be interpreted as a piecewise-constant interpolation of the solution density.

5.3 Fine to Coarse Redistribution

The mass going from fine to coarse is accounted for as follows. Recall that the mass we
store is normalized by hD

f where hf is the grid spacing of the level of the source. Define

hc to be the grid spacing of the destination. For all VoFs vf ∈ ind
−1(Ωl −G(Ωl,−Rr)),

we define the fine-to-coarse redistribution mass δ2M l,l−1 to be

δ2M l,l−1
vf

=
∑

v′

f
∈Q(vf)

δM l
vf
wvf ,v

′

f
κv′

f

Q(vf) = ηvf
∩ ind

−1(C−1
Nref

(Ωl−1)− Ωl).
(21)

For all VoFs vc ∈ ind
−1(CNref

(G(Ωl+1, Rr)− Ωl+1)), we define the coarse-to-fine redis-
tribution mass δ2M l,l+1 to be

δ2M l,l+1
vc

=
∑

v′

c∈S(vc)

δM l
vc
wvc,v

′

c
κv′

c

S(vc) = ηvc
∩ ind

−1(CNref
(Ωl+1)).

(22)

10

Define ζ2
v′

f
to be the unnormalized mass that goes to VoF v′

f
. We distribute this mass to

the VoF v′

c
= CNref

(v′

f
).

ζ2v′

f
= ζ2v′

c
= hD

f wvf ,v
′

f
κv′

f
δM l

vf
(23)

We define δU l−1
v′

c
to be the change in the coarse solution density due to δwMvf ,v

′

f
:

δU l−1
v′

c
=

ζ2
v′
f

κ
v′c

hD
c

(24)

Substituting from above, we increment the coarse solution as follows

U l−1
v′

c
+=

κ
v′
f

κ
v′c

ND
ref

δM l
vf
wvf ,v

′

f

vf ∈ ind
−1(Ωl −G(Ωl,−Rr)),

v′

f
∈ ηvf

∩ ind
−1(C−1

Nref
(Ωl−1)− Ωl)

v′

c
= CNref

(v′

f
)

(25)

5.4 Coarse to Coarse Redistribution

The re-redistribution algorithm proceeds as follows. Given v ∈ ind
−1(CNref

(Ωl+1), we
define the re-redistribution mass δ3Ml, l to be

δ3M l,l
v =

∑

v
′
∈T (v)

δM l
vwv,v

′κv
′

T (v) = ηv ∩ ind
−1(Ωl).

(26)

In the level redistribution step, we have added this mass to the solution density using
equation 15. Re-redistribution is the process of removing it so that the solution is not
modified by invalid regions

U l
v
′ −= δM l

vwv,v
′

v ∈ ind
−1(CNref

(Ωl+1))
(27)

6 Refluxing

First we describe the refluxing algorithm which, along with redistribution, preserves con-
servation at coarse-fine interfaces. The standard refluxing algorithm Given a level vector
field F on Ω, we define a discrete divergence operator D as follows:

κv(D · ~F) = 1
h
(
D−1
∑

d=0

(
∑

f∈F+
d
(v)

αf F̃f −
∑

f∈F−

d
(v)

αf F̃f) + αB
v F

B
v)

F̃f = Ff +
∑

d:d 6=dir(f)

|xf ,d|(Ff<<sign(xf ,d)ed − Ff),
(28)

11

where κv is the volume fraction of VoF v and αf is the area fraction of face f . Equation 28
consists of a summation of interpolated fluxes and a boundary flux. The flux interpolation
is described in [3]. Let ~F comp = {~F f , ~F c,valid} be a two-level composite vector field. We

want to define a composite divergence Dcomp(~F f , ~F c,valid)v, for v ∈ V c
valid. We do this

by extending F c,valid to the faces adjacent to v ∈ V c
valid, but are covered by Ff

valid.

< F
f
d >fc= 1

(nref)(D−1)

∑

f∈C−1
nref

(fc)

αfF
f
d

f c ∈ ind
−1(i+ 1

2
ed), i+ 1

2
ed ∈ ζ

f
d,+ ∪ ζ

f
d,−

ζ
f
d,± = {i± 1

2
ed : i± ed ∈ Ωc

valid, i ∈ Cnref
(Ωf)}

(29)

Then we can define (D · ~F)v,v ∈ Vc
valid, using the expression above, with F̃f =< F

f
d >

on faces covered by Ff . We can express the composite divergence in terms of a level
divergence, plus a correction. We define a flux register δ ~F f , associated with the fine level

δ ~F f = (δF f
0,...δF

f
D−1)

δF
f
d : ind−1(ζfd,+ ∪ ζ

f
d,−) → R

m
(30)

If ~F c is any coarse level vector field that extends ~F c,valid, i.e. F c
d = F

c,valid
d on F c,d

valid then
for v ∈ Vc

valid

Dcomp(~F f , ~F c,valid)v = (D~F c)v +DR(δ ~F
c)v (31)

Here δ ~F f is a flux register, set to be

δF
f
d =< F

f
d > −αfcF c

d on ind
−1(ζcd,+ ∪ ζcd,−) (32)

DR is the reflux divergence operator. For valid coarse vofs adjacent to Ωf it is given by

κv(DRδ ~F
f)v =

D−1
∑

d=0

(
∑

f :v=v+(f)

δF
f
d,f −

∑

f :v=v−(f)

δF
f
d,f) (33)

For the remaining vofs in Vf
valid,

(DRδ ~F
f) ≡ 0 (34)

We then add the reflux divergence to adjust the coarse solution U c to preserve conserva-
tion.

U c
v += κv(DR(δF))v (35)

At coarse cells which are also irregular, this leaves unaccounted-for the quantity of mass
δMRef given by

δMRef = (1− κv)(DR(δF))v (36)

This mass must be redistributed to preserve conservation:

δMRef,c
v =

∑

v
′
∈ηv−C(Vl,valid)

κv
′wv,v

′δMRef,c
v (37)

12

We increment the solution in the neighboring VoFs with their portion of δMRef :

U c
′ += κv

′wv,v
′δMRef,c

v

v
′

∈ ηv − C(Vf,valid)
(38)

Time steps and other factors have been absorbed into the definition of δM . Unfortunately,
we are not finished. In equation 38, some of the mass will be going back onto the fine
grid

δMRR,c += δMRef
∑

v
′
∈ηv−Vc,valid

κvwv,v
′ (39)

This mass must be accumulated at each fine time step. When the fine level has caught
up with the coarse level in time, we adjust the fine solution to account for this mass:

U
f

C−1(v
′
)
+= wv,v

′δMRR,c
v

v
′

∈ ηv − Vf,valid
(40)

7 Subcycling in time with embedded boundaries

We use the subcycling-in-time algorithm specified by Berger and Oliger [1] to advance
an AMR solution in time. Embedded boundary synchronization substantially complicates
Berger-Oliger timestepping. Here we present an overview of Berger-Oliger subcycling in
time for adaptive mesh refinement in the context of embedded boundaries. Say we are
solving the hyperbolic system of equations

∂U

∂t
+∇ · F = 0 (41)

in a domain discretized as described above. Here is an outline of the Berger-Oliger
algorithm for this equation. First we perform the steps required to preserve stability and
conservation in the presence of embedded boundaries.

• Compute fluxes F l on F .

• Compute the conservative and non-conservative solution updates (DC(F l) and
DNCC(F l)).

• Update the solution on the level:

Unew,l
v = U old,l

v −∆t(κDNC(F l)v + (1− κ)DC(F l)v), v ∈ ind
−1(Ωl) (42)

• Initialize redistribution mass δM l to be the mass left out in the previous step.

δM l
v = ∆tκv(1− κv)(D

NC(F l)v −DC(F l)v)
v ∈ ind

−1I l (43)

13

• Perform level redistribution of δM l:

U
new,l

v
′ += wv,v

′δM l
v

v
′

∈ {ηv ∩ ind
−1(Ωl)}

∑

v
′
∈ηv

wv,v
′κv

′ = 1
(44)

Second we perform the steps required to preserve conservation across coarse-fine inter-
faces. We define δF to be flux registers and δ2M to be redistribution registers.

• We increment the flux register between this level and the next coarser level.

δF
l,l−1
f += < F l >f ∆tl

f ∈ ∂(C(F l−1))
(45)

• We initialize the flux register between this level and the next finer level.

δF
l+1,l
f =< F l >f ∆tl

f ∈ ∂(F l+1)
(46)

• Increment redistribution registers between this level and the next coarser level.

δ2M l,l−1
v = δM l

vv ∈ ind
−1(I l) (47)

• Initialize redistribution registers with next finer level and the coarse-coarse (“re-
redistribution”) registers. for v ∈ ind

−1(I)l

δ2M l,l+1
v = δM l

v

δ2M l,l
v = −δM l

v

δ2M l+1,l
v = 0

(48)

• Advance level l + 1 solution to time tnew,l (requires a minimum of nref time steps.

• Reflux a portion of the flux difference in equation 46 and save the extra mass into
the appropriate redistribution register.

Unew,l
v += κDR(δF

l+1)v
δ2M l,l+1

v += κv(1− κv)DR(δF
l+1)v

δ3M l,l
v += κv(1− κv)DR(δF

l+1)v

(49)

• Redistribute mass that was redistributed (in both directions) across coarse-fine in-
terfaces.

U l+1
v′

f
+= δ2M l,l+1

vc
wvc,v

′

c

vc ∈ ind
−1(CNref

(G(Ωl+1, Rr)− Ωl+1))
v′

c
= ηvc

∩ ind
−1(CNref

(Ωl+1))
v′

f
∈ C−1

Nref
(v′

c
)

(50)

14

U l−1
v′

c
+=

κ
v′
f

κ
v′c

ND
ref

δ2M l,l−1
vf

wvf ,v
′

f

vf ∈ ind
−1(Ωl −G(Ωl,−Rr)),

v′

f
∈ ηvf

∩ ind
−1(C−1

Nref
(Ωl−1)− Ωl)

v′

c
= CNref

(v′

f
)

(51)

• Re-redistribute mass that was redistributed from invalid regions.

U l
v
′ −= δ3M l,l

v wv,v
′

v ∈ ind
−1(CNref

(Ωl+1))
(52)

• Finally average down the finer solution where appropriate

Unew,l
v =< Unew,l+1 >, v ∈ ind

−1CNref
(Ωl + 1) (53)

7.0.1 O(h3) Averaging

The stencil for Dirichlet EB boundary conditions on a coarse level can reach under the
fine level. Because of this, we need to average φ from the finer level to the coarser level
before evaluating Lφ. We use a higher-order (O(h3)) averaging operator because we need
a more accurate value at a coarse location than averaging the fine values which cover the
coarse cell would produce. Martin and Cartwright discuss this in detail. The standard
averaging operator is second order accurate and the truncation error analysis works such
that to avoid making O(1) errors in the Laplacian on coarse cells near the fine grid, we
need a third order estimate of the solution on regions covered by finer grids. We therefore
use a modified averaging operator in which we eliminate term of the truncation error of
the standard averaging operator. Consider a coarse cell at ~ic. The coarse cell is covered
by fine cells and the refinement ratio is two, the fine grid spacing is hf and the coarse
grid spacing is hc. Suppose we have a smooth function φe which exists at all points in
space. Away from coarse-fine interfaces, the Laplacian is discretized in the standard way.
In two dimensions, this discretization is:

(Lφ)i,j =
1

h2
(φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − 4φi,j) (54)

and in three dimensions

(Lφ)i,j =
1

h2
(φi+1,j,k + φi−1,j,k + φi,j+1,k + φi,j−1,k + φi,j,k+1 + φi,j,k−1 − 6φi,j,k) (55)

At the coarse-fine interface, we interpolate values onto ghost cells which surround the
union of rectangles that correspond to the level’s domain and use equation 54 to calculate
the Laplacian. We define the standard averaging operator AS in two dimensions to be

(AS(φ
e))(hc

~ic) =
1

4









φe(hf if , hfjf)+
φe(hf (if + 1), hfjf)+
φe(hf if , hf (jf + 1))+
φe(hf (if + 1), hf (jf + 1))









(56)

15

and in three dimensions to be

(AS(φ
e))(hc

~ic) =
1

8

























φe(hf if , hfjf , hfkf)+
φe(hf (if + 1), hfjf , hfkf)+
φe(hf if , hf (jf + 1,), hfkf)+
φe(hf (if + 1), hf (jf + 1), hfkf)+
φe(hf if , hfjf , hf (kf + 1))+
φe(hf (if + 1), hfjf , hf (kf + 1))+
φe(hf if , hf (jf + 1), hf (kf + 1))+
φe(hf (if + 1), hf (jf + 1), hf (kf + 1))

























(57)

where ~if = 2~ic. The truncation error τ of AS is given by

τ = φe(hc
~ic)− (AS(φ

e))(hc
~ic) =

h2
f

2
∇2φe(hc

~ic) +O(h3
f) (58)

Away from the embedded boundary, we define the modified averaging operator AM to be
AS with the leading order in the truncation error subtracted off:

(AM(φf))~ic = AS(φf)~ic −
h2
f

2
L(φf)~ic (59)

Near the embedded boundary, we extrapolate to O(h2) from fine cells to the coarse cell
and average the result.

8 EBAMRTools User Interface

This section describes the various classes which implement the various algorithms described
in the above section.

8.1 Classes EBCoarseAverage/EBCoarsen

The EBCoarseAverage class is used to average from finer levels on to coarser levels, or
for constructing averaged residuals in multigrid iteration. It averages fine data to coarse
in a volume-weighted way (see equation 6). This class uses copying from one layout to
another for communication. This class has as data a scratch copy of the data at the
coarse level. The averaging operator is blocking due to the copy. EBCoarsen does the
same thing with the same interface, but averages to O(h3) and is not conservative. The
important functions of the EBCoarseAverage/EBCoarsen classes are as follows:

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

16

const int& nref,

const int& nvar);

Define the stencils and internal data of the class. This must be called before the
average function will work.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

• void average(LevelData<EBCellFAB>& coarData,

const LevelData<EBCellFAB>& fineData,

const Interval& variables);

Average the fine data onto the coarse data over the intersection of the coarse layout
with the coarsened fine layout.

– coarData: The data over the coarse layout.

– fineData: The data over the fine layout. Fine and coarse data must have the
same number of variables.

– variables: The variables to average. Those not in this range will be left
alone. This range of variables must be in both the coarse and fine data.

8.2 Class EBPWLFineInterp

The EBPWLFineInterp class is used to interpolate in a piecewise-linear fashion coarse
data onto fine layouts (see equation 7). This is primarily a useful class for regridding. It
contains stencils and slopes over the coarse level and uses copy for communication. This
makes its interpolate function blocking. The important functions of EBPWLFineInterp
are as follows:

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

Define the stencils and internal data of the class. This must be called before the
interpolate function will work.

– dblFine, dblCoar: The fine and coarse layouts of the data.

17

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

• void interpolate(LevelData<EBCellFAB>& fineData,

const LevelData<EBCellFAB>& coarData,

const Interval& variables);

Interpolate the fine data from the coarse data over the intersection of the fine layout
with the refined coarse layout.

– fineData: The data over the fine layout.

– coarData: The data over the coarse layout.

– variables: The variables to interpolate. Those not in this range will be left
alone. This range of variables must be in both the coarse and fine data.

8.3 Class EBPWLFillPatch

Given coarse data at old and new times, during subcycling in time, we need to interpolated
ghost data onto a fine data set at a time between the old and new coarse times. The
EBPWLFillPatch class is used to interpolate fine data over the ghost region that is not
covered by other fine grids. Data is simply copied from other fine grids where it is available.
Only one layer of ghost cells is filled.

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

Define the stencils and internal data of the class. This must be called before the
interpolate function will work.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

18

• void interpolate(LevelData<EBCellFAB>& fineData,

const LevelData<EBCellFAB>& coarDataOld,

const LevelData<EBCellFAB>& coarDataNew,

const Real& coarTimeOld,

const Real& coarTimeNew,

const Real& fineTime,

const Interval& variables);

Interpolate the indicated fine data variables from the coarse data on ghost cells which
overlay a coarse-fine interface. Copy fine data onto ghost cells where appropriate
(using LevelData::exchange). Only one layer of ghost cells is filled.

– fineData: The data over the fine layout.

– coarDataOld, coarDataNew: The data over the coarse layout at the old and
new times. Fine and coarse data must have the same number of variables.

– coarTimeOld, coarTimeNew: The values of the old and new time of the
coarse data. The old time must be smaller than the new time.

– fineTime: The time at which the fine data exists. This time must be between
the old and new coarse time.

8.4 Class RedistStencil

The RedistStencil class holds the stencil at every irregular VoF in a layout. The default
weights that the stencil holds are volume weights. The class does allow the flexibility to
redefine these weights. The weights correspond to wv,v′ in equations 37 and 44.

• void define(const DisjointBoxLayout& dbl,

const EBISLayout& ebisl,

const Box& domain,

const int& redistRadius);

Define the internals of the RedistStencil class.

– dbl: The layout of the data.

– ebisl: The layout of the geometric description.

– domain: The computational domain at this level of refinement.

– nvar: The number of variables contained in the data at each VoF.

• void resetWeights(const LevelData<EBCellFAB>& modifier,

const int& ivar)

Modify the weights in the stencil by multiplying by the inputs in a normalized way.

19

– weights: Relative weights at each VoF in the stencil. For instance, if one
were to want to set the weighting to be mass weighting then modifier(v,

ivar) would contain the density at VoF v.

• const BaseIVFAB<VoFStencil>&

operator[] (const DataIndex& datInd) const

Returns the redistribution stencil at every irregular point in input Box associated
with this DataIndex.

8.5 Class EBLevelRedist

The EBLevelRedist class performs mass redistribution in an embedded boundary context.
The algorithm for this is described in section 5. At irregular cells in a level described by a
union of rectangles, mass to be redistributed is stored incrementally (one Box at a time,
with a ghost width equal to the redistribution radius). EBLevelRedist is then used to
increment a solution by the stored redistribution mass. The redistribution radius is a
constant static member of the class. The important functions of EBLevelRedist are as
follows:

• void define(const DisjointBoxLayout& dbl,

const EBISLayout& ebisl,

const Box& domain,

const int& nvar)

Define the internals of the EBLevelRedist class. Buffers are made at every irregular
cell including ghost buffers at a width of the redistribution radius. Sets values at all
buffers to zero.

– dbl: The layout of the data.

– ebisl: The layout of the geometric description.

– domain: The computational domain at this level of refinement.

– nvar: The number of variables contained in the data at each VoF.

• void resetWeights(const LevelData<EBCellFAB>& modifier,

const int& ivar)

Modify the weights in the stencil by multiplying by the inputs in a normalized way.

– weights: Relative weights at each VoF in the stencil. For instance, if one
were to want to set the weighting to be mass weighting then modifier(v,

ivar) would contain the density at VoF v.

• void storeMass(const BaseIVFAB<Real>& massDiff,

const DataIndex& datInd,

const Interval& variables);

20

Store the input mass difference in the internal buffers of the class by incrementing
the buffer with the mass difference.

– massDiff: Conserved values to store in registers.

– datInd: The index of the Box in the input DisjointBoxLayout to which
massDiff corresponds].

– variables: The variables to store. These must fit within zero and the number
of variables input to the define function.

• void setToZero();

Set the internal buffer to zero.

• void redistribute(LevelData<EBCellFAB>& solution,

const Interval& variables);

Redistribute the data contained in the internal buffers Uv′ += wv,v′δMv.

– solution: Solution to increment.

– variables: The variables to increment.

8.6 Class EBFluxRegister

The EBFluxRegister class performs refluxing in an embedded boundary context. The
algorithm for this is described in section 6. The important functions of EBFluxRegister
are as follows:

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

Define the internals of the EBFluxRegister class. Buffers are made at every
irregular cell including ghost buffers at a width of the redistribution radius. Sets
values at all buffers to zero.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

21

• void setToZero();

Set the registers to zero.

• void incrementCoarseRegular(

const EBFaceFAB& coarseFlux,

const Real& scale,

const DataIndex& coarsePatchIndex,

const Interval& variables,

const int& dir);

void incrementCoarseIrregular(

const BaseIFFAB<Real>& coarseFlux,

const Real& scale,

const DataIndex& coarsePatchIndex,

const Interval& variables,

const int& dir);

Increments the register with data from coarseFlux, multiplied by scale (α):
δF

f
d +=αF c

d , for all of the d-faces where the input flux (defined on a single rectangle)
coincide with the d-faces on which the flux register is defined. coarseFlux con-
tains fluxes in the dir direction for the grid dblCoar[coarsePatchIndex]. Only
the registers corresponding to the low faces of dblCoarse[coarsePatchIndex]
in the dir direction are incremented (this avoids double-counting at coarse-coarse
interfaces. of the flux register.

– coarseFlux : Flux to put into the flux register. This is not const because
its box is shifted back and forth - no net change occurs.

– scale : Factor by which to multiply coarseFlux in flux register.

– coarsePatchIndex : Index which corresponds to the box in the coarse solu-
tion from which coarseFlux was calculated.

– variables : The components to put into the flux register.

– dir : Direction of the faces upon which the fluxes live.

• void incrementFineRegular(

const EBFaceFAB& fineFlux,

const Real& scale,

const DataIndex& finePatchIndex,

const Interval& variables,

const int& dir,

const Side::LoHiSide& sd);

void incrementFineIrregular(

const BaseIFFAB<Real>& fineFlux,

const Real& scale,

const DataIndex& finePatchIndex,

const Interval& variables,

22

const int& dir,

const Side::LoHiSide& sd);

Increments the register with the average over each face of data from fineFlux,
scaled by scale (α): δF f

d +=α < F
f
d >, for all of the d-faces where the input flux

(defined on a single rectangle) cover the d-faces on which the flux register is defined.
fineFlux contains fluxes in the dir direction for the grid dbl[finePatchIndex].
Only the register corresponding to the direction dir and the side sd is initialized.
srcInterval and dstInterval are as above.

– fineFlux : Flux to put into the flux register. This is not const because its
box is shifted back and forth - no net change occurs.

– scale : Factor by which to multiply fineFlux in flux register.

– finePatchIndex : Index which corresponds to which box in the LevelData<FArrayBox>
solution from which fineFlux was calculated.

– variables : The Interval of components of the flux register into which the
flux data is put.

– dir : Direction of faces upon which fluxes live.

– sd : Side of the fine face where coarse-fine interface lies.

• void reflux(LevelData<EBCellFAB>& uCoarse,

const Interval& variables,

const Real& scale);

Increments uCoarse with the reflux divergence of the contents of the flux register,
scaled by scale (α): U c += αDR(δ ~F).

– uCoarse : The solution that gets modified by refluxing.

– variables: gives the Interval of components of the flux register that cor-
respond to the components of uCoarse.

– scale : Factor by which to scale the flux register.

• void incrementRedistRegister(EBCoarToFineRedist& register,

const Interval& variables);

Increments redistribution register with left-over mass from reflux divergence as in
equation 49: δ2M l,l+1

v += κv(1− κv)DR(δF
l+1)v.

– register: Coarse to fine register that must be incremented (δ2M l,l+1).

– variables: Array indices to be incremented.

23

8.7 Class EBCoarToFineRedist

The EBCoarToFineRedist class stores and redistributes mass that must move from the
coarse solution to the fine solution The important functions of EBCoarToFineRedist are
as follows:

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

Define the internals of the class.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

– weightModifier: Multiplier to stencil weights (density if you want mass
weighting). If this is NULL, use volume weights.

– weightModVar Variable number of weight modifier.

• void resetWeights(const LevelData<EBCellFAB>& modifier,

const int& ivar)

Modify the weights in the stencil by multiplying by the inputs in a normalized way.

– weights: Relative weights at each VoF in the stencil. For instance, if one
were to want to set the weighting to be mass weighting then modifier(v,

ivar) would contain the density at VoF v.

• void setToZero();

Set the registers to zero.

• void increment(BaseIVFAB<Real>& coarMass,

const DataIndex& coarPatchIndex,

const Interval& variables);

Increment the registers by the mass difference in coarMass as shown in the second
part equation 49.

– coarMass: The mass difference to add to the register.

– coarPatchIndex: The index to the box on the coarse grid.

24

– variables: The variables in the register to increment.

• void redistribute(LevelData<EBCellFAB>& fineSolution,

const Interval& variables);

Redistribute the data contained in the internal buffers Unew,l+1
vf +=wv,v′δ2M l,l+1

v , vf ∈
C−1

nref (v)

– fineSolution: Solution to increment.

– variables: The variables to increment.

8.8 Class EBFineToCoarRedist

The EBFineToCoarToRedist class stores and redistributes mass that must go from the
fine to the coarse grid. The important functions of EBFineToCoarRedist are as follows:

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

Define the internals of the class.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

– weightModifier: Multiplier to stencil weights (density if you want mass
weighting). If this is NULL, use volume weights.

– weightModVar Variable number of weight modifier.

• void resetWeights(const LevelData<EBCellFAB>& modifier,

const int& ivar)

Modify the weights in the stencil by multiplying by the inputs in a normalized way.

– weights: Relative weights at each VoF in the stencil. For instance, if one
were to want to set the weighting to be mass weighting then modifier(v,

ivar) would contain the density at VoF v.

• void setToZero();

Set the registers to zero.

25

• void increment(BaseIVFAB<Real>& fineMass,

const DataIndex& finePatchIndex,

const Interval& variables);

Increment the registers by the mass difference in fineMass as shown in equation 49.

– fineMass: The mass difference to add to the register.

– finePatchIndex: The index to the box on the fine grid.

– variables: The variables in the register to increment.

• void redistribute(LevelData<EBCellFAB>& coarSolution,

const Interval& variables);

Redistribute the data contained in the internal buffers Unew,l
v′ += w

fc
v,v′δ2M l+1,l

v

– fineSolution: Solution to increment.

– variables: The variables to increment.

8.9 Class EBCoarToCoarRedist

The EBCoarToCoarToRedist class stores and redistributes mass that was redistributed
to the coarse grid that is covered by the fine grid and now must be corrected. This is the
notorious “re-redistribution” process. The important functions of EBCoarToCoarRedist
are as follows:

• void define(const DisjointBoxLayout& dblFine,

const DisjointBoxLayout& dblCoar,

const EBISLayout& ebislFine,

const EBISLayout& ebislCoar,

const Box& domainCoar,

const int& nref,

const int& nvar);

Define the internals of the class.

– dblFine, dblCoar: The fine and coarse layouts of the data.

– ebislFine, ebislCoar: The fine and coarse layouts of the geometric de-
scription.

– nref: The refinement ratio between the two levels.

– nvar: The number of variables contained in the data at each VoF.

• void resetWeights(const LevelData<EBCellFAB>& modifier,

const int& ivar)

Modify the weights in the stencil by multiplying by the inputs in a normalized way.

26

– weights: Relative weights at each VoF in the stencil. For instance, if one
were to want to set the weighting to be mass weighting then modifier(v,

ivar) would contain the density at VoF v.

• void setToZero();

Set the registers to zero.

• void increment(BaseIVFAB<Real>& coarMass,

const DataIndex& finePatchIndex,

const Interval& variables);

Increment the registers by the mass difference in coarMass as shown in equation 49.

– coarMass: The mass difference to add to the register.

– coarPatchIndex: The index to the box on the fine grid.

– variables: The variables in the register to increment.

• void redistribute(LevelData<EBCellFAB>& coarSolution,

const Interval& variables);

Redistribute the data contained in the internal buffers Unew,l
v′ += wv,v′δ2M l,l

v

– coarSolution: Solution to increment.

– variables: The variables to increment.

8.10 Class EBQuadCFInterp

This class interpolates to ghost cells over the coarse-fine interface with O(h3) error.

• EBQuadCFInterp(const DisjointBoxLayout& a_dblFine,

const DisjointBoxLayout& a_dblCoar,

const EBISLayout& a_ebislFine,

const EBISLayout& a_ebislCoar,

const ProblemDomain& a_domainCoar,

const int& a_nref,

const int& a_nvar,

const LayoutData<IntVectSet>& a_cfivs);

Define the interpolation object.

• void

interpolate(LevelData<EBCellFAB>& a_fineData,

const LevelData<EBCellFAB>& a_coarData,

const Interval& a_variables);

Interpolate to the ghost cells of the fine data to O(h3).

27

References

[1] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. J. Comput. Phys., 53:484–512, March 1984.

[2] P. Colella, D. T. Graves, N.D. Keen, T. J. Ligocki, D. F. Martin, P.W. McCorquodale,
D. Modiano, P.O. Schwartz, T.D. Sternberg, and B. Van Straalen. Chombo Software
Package for AMR Applications - Design Document. unpublished, 2000.

[3] Hans Johansen and Phillip Colella. A cartesian grid embedded boundary method for
Poisson’s equation on irregular domains. J. Comput. Phys., 1998.

28

