
Embedded Boundary AMR Elliptic Algorithm and

Implementation

P. Colella
D. T. Graves
T. J. Ligocki

B. Van Straalen

Applied Numerical Algorithms Group
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, CA

May 29, 2003

Contents

1 Introduction 3

1.1 Introduction . 3

2 Poisson’s Equation 4

2.1 Poisson’s equation . 4
2.1.1 Operator Discretization . 4

2.1.1.1 Notation . 4
2.1.1.2 Interior Method . 4
2.1.1.3 Boundary Conditions 6
2.1.1.4 Homogeneous Dirichlet Boundary Condition at Faces . 7
2.1.1.5 Homogeneous Dirichlet Boundary Condition at Embed-

ded Boundary Segments 8
2.1.2 Relaxation Method . 13
2.1.3 Multigrid Algorithm . 14
2.1.4 Viscous operator discretization 15
2.1.5 Slope Calculation . 15

3 Viscous Tensor Equation 18

3.1 Viscous Tensor Equation . 18
3.1.1 Discretization . 18
3.1.2 Flux at the Boundary . 19

4 Conductivity Operator 20

4.1 Conductivity Equation . 20
4.1.1 Discretization . 20
4.1.2 Flux at the Boundary . 21

5 EBAMRElliptic Interface 22

5.1 Overview . 22
5.2 EBPoissonOpFactory . 22
5.3 EBAMRPoissonOpFactory . 23
5.4 EBAMRTGA . 25
5.5 Example . 25

1

5.6 Snippet to solve Poisson’s equation . 25
5.7 Snippet to Project a Cell-Centered Velocity Field 26

2

Chapter 1

Introduction

1.1 Introduction

This document is to briefly explain the workings of the EBAMRElliptic implementation.
First, the algorithm is explained. Here we extend the AMR multigrid algorithm of Martin
and Cartwright [6] to embedded boundaries using the results of Johansen and Colella [4],
[5]. Second, we document the implementation of the EBAMRElliptic software in detail,
trying wherever possible to draw the connections from the software to the algorithm
specification. We shall describe the algorithm in both two and three dimensions.

We are going to present two examples. For both, we are given a bounded domain
Ω and a charge density distribution ρ which exists over all of Ω and we are given a
boundary condition for the solution is given on ∂Ω. We discretize the domain with a
block-structured, adaptive mesh.

In the first example, we solve Poisson’s equation

∇ · (∇φ) = ρ (1.1)

for φ. In the second example, we present

3

Chapter 2

Poisson’s Equation

2.1 Poisson’s equation

This section describes the method for solving the elliptic partial differential equation

L(φ(~x)) = ρ(~x) (2.1)

on a Cartesian grid embedded boundary mesh, for the special case of Poisson’s equation,
in which

L(φ(~x)) = ∇2φ(~x) (2.2)

is the Laplacian. This algorithm is largely an extension of that developed by Johansen
and Colella [4] combined with the AMR multigrid algorithm of Martin and Cartwright [6].

2.1.1 Operator Discretization

2.1.1.1 Notation

To suppress the use (i, j, k) notation, we define: v+(f) to be the VoF on the high side
of face f ; v−(f) to be the VoF on the low side of face f ; f+

d (v) to be the set of faces
on the high side of VoF v; f−

d (v) to be the set of faces on the low side of VoF v,
where d ∈ {x, y, z} is a coordinate direction (the number of directions is D). Also, we
compose these operators to obtain the set of VoFs directly connected to a given VoF:
v+d (v) = v+(f+

d (v)) and v−d (v) = v−(f−

d (v)).
Barred variables, such as x̄v or x̄f , are distances from the center of the grid cell

containing v or of the grid face containing f , respectively, that have been normalized by
the grid spacing h. Typically, −1

2
≤ (̄·) ≤ 1

2
.

2.1.1.2 Interior Method

The Laplacian of φ is defined in three stages: compute the grid-centered gradient of
φ, recenter the gradient, and compute the divergence of recentered gradient. The face-

4

centered gradient of φ is defined as

g̃df =
1

h

(
φv+(f) − φv−(f)

)
(2.3)

The gradients at the irregular face centroids gdf are computed by interpolation using a
modification of the Johansen-Colella method. Interpolation is done in the D− 1 dimen-
sional, linear subspace which contains the irregular face. In 2D, this is a line and, in 3D,
this is a plane. If possible, multilinear interpolation is done using the face-centered gradi-
ents whose locations bound the centroid of the irregular face. Multilinear interpolation is
possible if all the face-centered gradients needed can be used (see below for the definition
of “can be used” in this context). If multilinear interpolation is not possible then the g̃df
is used at the irregular face centroid, i.e., piecewise constant interpolation.

By the divergence theorem, the integral of the Laplacian of φ over a VoF is equal to
the integral around the boundary of the VoF of the gradient of φ. Discretizing the integral
with the midpoint rule yields the approximation

Lv(φ) =
1

κvh


 ∑

f∈f+

d
(v)

αfg
d
f −

∑

f∈f−

d
(v)

αfg
d
f − αEB

v

(
~gEB
v ·n̂EB

v

)

 (2.4)

where κv is the volume fraction of a VoF v, αf is the area fraction of face f , and αEB
v is

the area fraction of the embedded boundary of the VoF. The superscript EB, in general,
refers to quantities associated with the segment of the embedded boundary within a VoF.
The calculation of (~gBv · n̂B

v), the normal gradient of φ at the boundary, is described in
section 2.1.1.3. In regions of the grid where all VoFs and faces involved are regular, no
recentering of the gradient is required and there is no contribution from the embedded
boundary. In this case equation 2.3 gives the gradient at the VoF face and this method
reduces to the familiar star-shaped direction-split stencil for the Laplacian:

Lv(φ) =
1

h2

(
D−1∑

d=0

φv+
d
(v) − 2φv + φv−

d
(v)

)
. (2.5)

See figure 2.1 for a graphical version of the stencil in two dimensions.
Now we define when a face-centered gradient “can be used” in the context of com-

puting the gradient at the centroid of an irregular face. For each direction d′ 6= d, we
define two sets of VoFs,

v−d′ = v±(f±

d′ ((v
−(f)))

v+d′ = v±(f±

d′ ((v
+(f))) (2.6)

where the choice of sign is the sign of x̄d′

f , the normalized centroid of f in the d′ direction.
Basically, we take the VoF on each side of f (in the d direction), find all faces connected

5

v (v)0
−φ

v (v)1
−φ

v (v)+φ
1

v (v)0
+φφ

v

1

1

1

1

−4

Figure 2.1: Illustration of the 5-point Laplacian stencil in two dimensions.

to that VoF in the low or high, ±, d′ direction, and then collect all the VoFs connected
to the other side of these faces.

Now, construct the set of faces that are shared by a VoF in v−d′ and a VoF in v+d′ .
If there is one such face, it is f ′(d′). If there are no faces or more than one face then
gdf = g̃df , i.e., drop order.

2.1.1.3 Boundary Conditions

There are two distinct type of boundaries: faces which lie on the boundary of the solution
domain, and embedded boundary segments which are contained within a VoF. See fig-

embedded boundary segments

boundary faces

boundary faces

Figure 2.2: Boundary faces and embedded boundary segments.

6

��
��
��
��

��
��
��
��

f

v

f ’

Figure 2.3: VoFs and faces for Dirichlet boundary condition at a boundary face.

ure 2.2. Discretization of homogeneous Dirichlet and Neumann boundary conditions are
described for each type of boundary face. Homogeneous Neumann boundary conditions
are defined by setting the appropriate gradient to zero. Homogeneous Dirichlet boundary
conditions are more involved.

2.1.1.4 Homogeneous Dirichlet Boundary Condition at Faces

For a boundary face f normal to d, the normal gradient depends on whether the solution
domain is on the high side (+) of f or on the low side (−) of f . The gradient is

g̃df = ±
1

h
(3φv − φ1/3) (2.7)

where
v = v±(f) (2.8)

is the first VoF in the solution domain, and

φ1 =

∑

f ′∈f±

d
(v)

ℓf ′φv±(f ′)

∑

f ′∈f±

d
(v)

ℓf ′

(2.9)

is the face-area-averaged value of the solution in the set of VoFs in the second cell inward
in the solution domain that are directly connected to the VoF v. An example is shown
in figure 2.3. In the figure, the solution domain is on the high side of the face f . The
set of VoFs v+(f ′) is shaded gray. Note that the crosshatched VoF is in the same cell as
v+(f ′), but does not participate in the average.

7

C

C-

C+

D-

D

D+

0

0

B
x

B
C

D

v

Figure 2.4: Dirichlet boundary condition at embedded boundary segment. Stencil for
quadratic interpolation. Interpolate values from cell centers (+) to intersection points
(◦). Gradient at boundary segment centroid (•) is found by differencing values at the ◦s.

2.1.1.5 Homogeneous Dirichlet Boundary Condition at Embedded Boundary

Segments

For an embedded boundary segment, the gradient normal to the segment is found by
casting a ray normal to the segment into the solution domain. See figure 2.4. The

ray
−−−−−→

BCD is cast from the centroid of the embedded boundary face B in VoF v. Note
that, in this example, n̂B

v,x ≥ n̂B
v,y ≥ 0. If this inequality does not hold, the problem

is transformed into a different coordinate system in which it does hold by means of
coordinate swaps and reflections. The direction that transforms to x is called the major
coordinate. Unless otherwise specified, the rest of this discussion is in terms of the
transformed coordinate system.

Planes are constructed normal to x through the centers of cells near v. We then find
the intersection of the ray with the two planes that are closest to but do not intersect v.
In the figure, the intersection points are C, the closer point, and D, the further point.
We will first describe the method assuming all the cells necessary are regular except
this one containing the embedded boundary. We locate the centers of the cells these
intersections are within, C0 and D0, and the centers of the neighbor cells of each in the
same intersection plane, C+ and C−, and D+ and D−, respectively (in three dimensions,
there are eight neighbors each, C++, C+0, C+−, etc.). Values at C and D are found by
quadratic interpolation. In two dimensions,

φC = N+(ȳC)φC+
+N0(ȳC)φC0

+N−(ȳC)φC−
(2.10)

8

φ2
I

P2

P1

φ1
I

Bφ

Figure 2.5: Quadratic approximation of C in three dimensions. We interpolate in each
plane then interpolate along ray.

and similarly for φD, where
ȳCh = yC − yC0

(2.11)

and the interpolation functions are

N+(ξ) = 1
2
ξ (ξ + 1)

N0(ξ) = 1− ξ2 (2.12)

N−(ξ) = 1
2
ξ (ξ − 1) .

If the major coordinate were y, then y would be replaced by x in equation 2.10.
With the values φC and φD known, the gradient at B normal to the embedded bound-

ary segment is
(
~gBv ·n̂

B
v

)
=

nB
v,x

h

(
2− x̄B

1− x̄B
φC −

1− x̄B

2− x̄B
φD

)
(2.13)

where x̄Bh = xB − iBh is the x-component of the distance from the centroid of the
embedded boundary face B to the center of the cell it is in. The terms nB

v,x and x̄B are
associated with the major coordinate.

Note that the value of the solution at a VoF v does not affect the value of the gradient
at B, and therefore does not contribute to the Laplacian at v via this boundary condition.

The method just described can be extended to the case where the cells are not all
regular. Define V oF 0 to be the VoF containing the current embedded boundary. Let
V oF 1 be the set of VoFs connected to V oF 0 via the face the normal first intersects
(what is done if the normal intersects an edge or corner is described below). Note, all the
VoFs, V oF 1, will lie in one cell, Cell1. Continuing in this fashion, let V oF 2 be the set

9

P0,1 P1,1

P1,0 P1,0

P1,1P0,1

B

B
v

Figure 2.6: Dirichlet boundary condition at embedded boundary segment. Stencil for
least-squares fit. Left:: typical situation. Right:: nearly degenerate situation.

of all the VoFs connected to a VoF in V oF 1 via the second face the normal intersects
and they will all lie in Cell2. Observe that one of the Celli will be the cell that C lies
in, C0, and one will be the cell that D lies in, D0. Call these cells CellC and CellD,
respectively. Now, the set of VoFs corresponding to these cells, V oFC and V oFD, may
or may not be empty. If V oFC is empty then we approximate the gradient at B normal
to the embedded boundary by 0. If V oFC is not empty but V oFD is empty we will use
linear interpolation to compute the value a C

If the cells containing C and D, described above, are not regular or are part of a
coarse-fine interface, a different method is used to approximate the normal gradient. The
gradient also can be found by a least-squares minimization method. See figure 2.6. Note
that the components of the normal in this example are positive. If they are not, the
problem is transformed via coordinate swaps into a coordinate system in which they are.
We wish to find the normal gradient at B, the centroid of an embedded boundary face, in
a VoF v. The details depend on the dimensionality of the problem. The two-dimensional
case is described first.

In two dimensions, we select three cells adjacent to v’s cell, two directly adjacent and
one diagonally adjacent. The centers of these cells are the points P1,0, P0,1 and P1,1.
Note that the points P1,0 etc. are always the centers of the cells, even if a cell is irregular.
We then do a least-squares fit on the gradients in the directions BP0,1, BP1,0 and BP1,1

(which are known) to determine the components of the full vector gradient (φB
x , φ

B
y).

Figure 2.6 also shows the need for a least-squares fit, rather than a coordinate trans-
formation. On the left of the figure is the situation if the volume of v is not small. In this
situation, the gradients in the directions BP1,0 and BP0,1 are linearly independent, so it is
possible to compute the full gradient from them alone. On the right is the situation in the
degenerate case in which the volume of v is small (and the normal n̂B

v is not aligned with
the grid). The point B is almost at the corner of the grid cell, directly between P1,0 and
P0,1. Thus, the gradients in the directions BP1,0 and BP0,1 are not linearly independent,
and a full gradient cannot be computed from them alone.

10

The overdetermined system we need to approximate is

φ1,0 − φB =
(
x1,0 − xB

)
φB
x +

(
y1,0 − yB

)
φB
y

φ0,1 − φB =
(
x0,1 − xB

)
φB
x +

(
y0,1 − yB

)
φB
y

φ1,1 − φB =
(
x1,1 − xB

)
φB
x +

(
y1,1 − yB

)
φB
y (2.14)

or, with x̄h = x − iBh, and replacing x̄1,0 etc. with the actual values (which are always
either unity or zero because P1,0 etc. are cell centers),

A g = ∆Φ (2.15)

where

∆Φ =





φ1,0 − φB

φ0,1 − φB

φ1,1 − φB



 , A =




1− x̄B −ȳB

−x̄B 1− ȳB

1− x̄B 1− ȳB


h, g =

{
φB
x

φB
y

}
. (2.16)

Note that φB = 0. The least-squares approximation to equation 2.15 is the solution g to

M g = b (2.17)

where
M = A

T
A, b = A

T∆Φ. (2.18)

The normal gradient is then

(
~gBv ·n̂

B
v

)
= n̂B

v ·g = nB
v,xφ

B
x + nB

v,yφ
B
y (2.19)

If any of the cells containing a point P1,0 etc. are irregular and contain multiple VoFs,
we use for the value φ at that cell’s center the volume-weighted average of the values of φ
in the set of VoFs in that cell which are correctly connected to the VoF v. Note that the
appropriate set of VoFs for the diagonal neighbor P1,1 is the set of VoFs in that cell that
are connected to the appropriate VoFs in both the cells of P1,0 and P0,1. See figure 2.7.
In the figure, the VoFs v0, v1 and v2 are in the stencil because they are directly connected
to v. The VoF v3 is in an adjacent cell, but is not connected to v. We call the set of
VoFs {v0, v1} the x-neighbors of v and the set of VoFs {v2} the y-neighbors of v. Of the
VoFs in the diagonally adjacent cell, the VoF v4 is in the stencil because it is connected
both to an x-neighbor of v (namely v0), and to a y-neighbor of v (namely v2); the VoF v5
is excluded because it is connected neither to an x-neighbor nor a y-neighbor of v; and
the VoF v6 is excluded because, although it is connected to an x-neighbor of v (namely
v1), is is not connected to any y-neighbor.

In three dimensions, we need four equations to form an overdetermined system for
three components of the full vector gradient. We use the directional gradients from B
to each of four cell centers. The cells are the three directly adjacent cells and one cell
that is diagonally adjacent in the plane through v’s cell that is normal to the direction

11

0

v6

v
1

v
2

v3

v
4

v5

v

B

v

Figure 2.7: VoFs in the least-squares stencil. The VoFs v0, v1, v2 and v4 are in the stencil
for the gradient at B.

x

y

z
Figure 2.8: Least-squares stencil for three dimensions. The centroid of the embedded
boundary face is the •. The centers of the neighbor cells for the least-squares approxima-
tion are the +s.

12

in which the component of the normal n̂B
v is the least. See figure 2.8. In the figure,

nB
v,x > nB

v,y > nB
v,z, so that the fourth point is P1,1,0, the center of the cell in the same

xy-plane as the center of v’s cell. We now have

A g = ∆Φ (2.20)

where

∆Φ =





φ1,0,0 − φB

φ0,1,0 − φB

φ0,0,1 − φB

φ1,1,0 − φB





, A =




1− x̄B −ȳB −z̄B

−x̄B 1− ȳB −z̄B

−x̄B −ȳB 1− z̄B

1− x̄B 1− ȳB −z̄B


h, g =





φB
x

φB
y

φB
z





(2.21)
which is approximated similarly to the two-dimensional case.

Again, the value of the solution at a VoF v does not affect the value of the gradient
at B, and therefore does not contribute to the Laplacian at v via this boundary condition.

2.1.2 Relaxation Method

The relaxation method is based on Gauss-Seidel iteration with red-black ordering (GSRB) [].
The VoFs are divided into three sets: irregular VoFs, and two sets of regular VoFs, red
and black, such that every black VoF is adjacent only to red and irregular VoFs, and
every red VoF is adjacent only to black and irregular VoFs. One iteration consists of the
following steps:

• update the solution at the black VoFs,

• update the solution at the red VoFs,

• update the solution at the irregular VoFs Nirreg times, where Nirreg > 0 is an
adjustable parameter.

The solution at a VoF is updated by incrementing it with

δφv = αv (ρv − Lv (φ)) (2.22)

where αv is a relaxation coefficient designed to annihilate the diagonal terms of the
differential operator Lv(φ). It is constructed by applying the operator to a delta function
and taking the inverse,

1

αv

= Lv (δv) (2.23)

where

δv (~x) =

{
1 if ~x is within v
0 otherwise

(2.24)

The operator Lv must include the face boundary conditions (see section 2.1.1.4), but does
not require the embedded boundary segment boundary conditions (see section 2.1.1.5)
because in the latter the contribution to the operator at the VoF v does not depend on
the value of the solution at v.

13

2.1.3 Multigrid Algorithm

Multigrid is a method for the acceleration of convergence of iterative schemes for elliptic
and parabolic equations. It involves the creation of a sequence of coarser grids on which
a coarser problem is solved. A procedure is also specified for transferring solution data
between grids of different resolution. For solving a linear problem, we use the residual-
correction form of multigrid. One multigrid cycle consists of the following sequence of
steps:

• perform Npre iterations of the relaxation procedure

• restrict residual from this grid to the next coarser grid:

ρ2h = I2hh
(
ρh − Lh(φh)

)
(2.25)

• perform Ncycles multigrid cycles on the coarser grid to solve

L2h(φ2h) = ρ2h (2.26)

• interpolate correction from the next coarser grid to this grid:

eh = Ih2h
(
φ2h
)

(2.27)

• increment solution on this grid with the correction eh

• perform Npost iterations of the relaxation procedure

If Ncycles = 1, the method is called a V-cycle; if Ncycles = 2, the method is called a
W-cycle; other values of Ncycle are unusual.

Something about bottom solves.
We use the sequence of coarse grids produced by EBIndexSpace’s coarsening algo-

rithm. A grid has half the resolution of the finer grid from which it was created, and the
volumes of VoFs and areas of faces are “conserved,”

Λv =
1

2D

∑

v′∈refine(v)

Λv′

ℓf =
1

2D−1

∑

f ′∈refine(f)

Λf ′ . (2.28)

Data is transferred to a coarser grid by a volume-weighted average restriction opera-
tor I2hh , defined as

φv =
1

2DΛv

∑

v′∈refine(v)

Λv′φv′ . (2.29)

Data is transferred to a finer grid by piecewise-constant interpolation operator Ih2h.
Because we are using the residual-correction form of multigrid, all boundary conditions

on the coarser grids are homogeneous.

14

2.1.4 Viscous operator discretization

In this section, we define a Helmholtz operator and how we solve it. We are solving

(I + µL)φ = rho (2.30)

where µ is a constant. Just as we did for the MAC projection, we discretize L ≡ DGmac

(see equation ??). In this context, however, since the irregular boundary is a no-slip
boundary, we must solve (2.30) with Dirichlet boundary conditions φ = 0 on the irregular
boundary. To do this, we must compute

FB =
∂φ

∂n̂

at the embedded boundary. We follow Schwartz, et. al [7] and compute this gradient by
casting a ray into space, interpolating φ to points along the ray, and computing the normal
gradient of phi by differencing the result. We cast a ray along the normal of the VoF from
the centroid of area of the irregular face C. We find the closest points B and C where the
ray intersects the planes formed by cell centered points. The axes of these planes d1, d2
will be the directions not equal to the largest direction of the normal. We use biquadratic
interpolation to interpolate data from the nearest cell centers to the intersection points
B and C. In two dimensions, we find the nearest lines of cell centers (instead of planes)
and the interpolation is quadratic. We then use this interpolated data to compute a O(h2

approximation of ∂φ

∂n̂
. In the case where there are not enough cells to cast this ray, we

use a least-squares approximation to ∂φ

∂n̂
which is O(h). As shown in [3], the modified

equation analysis shows that, for Dirichlet boundary conditions, it is sufficient to have
O(1) boundary conditions to achieve second order solution error convergence for elliptic
equations.

2.1.5 Slope Calculation

The notation

CC = A | B | C

means that the 3-point formula A is used for CC if all cell-centered values it uses are
available, the 2-point formula B is used if the cell to the right (i.e. the high side) of the
current cell is covered, and the 2-point formula C is used if the cell to the left (i.e. the
low side) current cell is covered.

To compute the limited differences in the first step on the algorithm, we use the
second-order slope calculation [1] with van Leer limiting.

15

A

B

C

B

d1

d2

Figure 2.9: Ray casting to get fluxes for Dirichlet boundary conditions at the irregular
boundary. A ray is cast along the normal from the centroid of the irregular area C and the
points A and B are the places where this ray intersects the planes formed by cell centers.
Data is interpolated in these planes to get values at the intersection points. That data is
used to compute a normal gradient of the solution.
.

16

∆d
2Wi = ∆vL(∆CWi,∆

LWi,∆
RWi) | ∆

V LLWi | ∆
V LRWi

∆BWi =
2
3
((W − 1

4
∆d

2W)i+ed − (W + 1
4
∆d

2W)i−ed)
∆CWi =

1
2
(W n

i+ed
−W n

i−ed
)

∆LWi = W n
i −W n

i−ed

∆RWi = W n
i+ed

−W n
i

∆3LWi =
1
2
(3W n

i − 4W n
i−ed

+W n
i−2ed

)
∆3RWi =

1
2
(−3W n

i + 4W n
i+ed

−W n
i+2ed

)

∆V LLWi = min(∆3LWi,∆
LWi) if ∆3LWi ·∆

LWi > 0
∆V LLWi = 0 otherwise
∆V LRWi = min(∆3RWi,∆

RWi) if ∆3RWi ·∆
RWi > 0

∆V LRWi = 0 otherwise

We apply the van Leer limiter component-wise to the differences.

17

Chapter 3

Viscous Tensor Equation

3.1 Viscous Tensor Equation

This section describes the method for solving the elliptic partial differential equation

κL~v = κα~v + β∇ · F = κρ.

α is a constant and β = β(~x). F is given by

F = η(∇~v +∇~vT) + λ(I∇ · ~v) (3.1)

where I is the identity matrix, η = η(~x), and λ = λ(~x).

3.1.1 Discretization

We discretize normal components of the face-centered gradient using an average of cell-
centered gradients for tangential components and a centered-difference approximation to
the normal gradient.

(∇~v)d
′

i+ 1

2
ed

=

(
1
h
(~vi+ed − ~vi) if d = d′

1
2
((∇~v)d

′

i+ed
+ (∇~v)d

′

i) if d 6= d′

)

where

(∇~v)di =
1

2h
(~vi+ed − ~vi−ed).

We discretize the divergence as follows

(κ∇ · F)i =
D∑

d′=1

(α∇F)d
′

i+ 1

2
ed

+ αBF
B

where κ and α are the volume and area fractions.

18

We use equation 3.1 get the flux at cell face centers. We then interpolate the flux to
face centroids. In two dimensions, this interpolation takes the form

F̃
n+ 1

2

f = F
n+ 1

2

f + |x̄|(F
n+ 1

2

f<<sign(x̄)ed
− F

n+ 1

2

f) (3.2)

where x̄ is the centroid in the direction d perpendicular to the face normal. In three dimen-
sions, define (x̄, ȳ) to be the coordinates of the centroid in the plane (d1, d2) perpendicular
to the face normal.

F̃
n+ 1

2

f =F
n+ 1

2

f (1− x̄ȳ + |x̄ȳ|)+ (3.3)

F
n+ 1

2

f<<sign(x̄)ed
1 (|x̄| − |x̄ȳ|)+ (3.4)

F
n+ 1

2

f<<sign(x̄)ed
2 (|ȳ| − |x̄ȳ|)+ (3.5)

F
n+ 1

2

f<<sign(x̄)ed
1
<<sign(x̄)ed

2 (|x̄ȳ|) (3.6)

Centroids in any dimension are normalized by ∆x and centered at the cell center. This
interpolation is only done if the shifts that are used in the interpolation are uniquely-defined
and single-valued. We use a conservative discretization for the flux divergence.

κv∇ · ~F ≡ (D · ~F) = ((
D−1∑

d=0

∑

±=+,−

∑

f∈F
d,±
v

±αf F̃
n+ 1

2

f) + αB
v F

B,n+ 1

2
v) (3.7)

where where FB is the flux at the irregular boundary, wherein lies most of the difficulty
in this operator.

3.1.2 Flux at the Boundary

In all cases, we construct the gradient at the boundary and use equation 3.1 to construct
the flux.

For Neumann boundary conditions, the gradient of the solution is specified at the
boundary.

For Dirichlet boundary conditions, the gradient normal to the boundary is determined
using the value at the boundary. The gradients tangential to the boundary are specified.
For irregular boundaries, the procedure for calculating the gradient normal to the boundary
is given in section 2.1.1.5. For domain boundaries, we construct a quadratic function with
the value at the boundary and the two adjacent points along the normal to construct the
gradient. For example, say we are at the low side of the domain with a value φ0 at the
boundary. The normal gradient is given by. that means that normal gradient is given by

(∇φ)x
−

1

2
,j,k

=
9(φ0,j,k − φ0)− (φ1,j,k − φ0)

3∆x

19

Chapter 4

Conductivity Operator

4.1 Conductivity Equation

This section describes the method for solving the elliptic partial differential equation

κLφ = καaφ+ β∇ · F = κρ.

α and beta are constants, a is a function of space and F is given by

F = b∇φ (4.1)

The conductivity b is a function of space.

4.1.1 Discretization

We discretize the face-centered gradient for the flux using a centered-difference approxi-
mation.

(∇φ)d
i+ 1

2
ed

=
1

h
(phii+ed − φi)

We discretize the divergence as follows

(κ∇ · F)i =
D∑

d′=1

(α∇F)d
′

i+ 1

2
ed

+ αBF
B

where κ and α are the volume and area fractions. We use equation 4.1 get the flux at
cell face centers. We then interpolate the flux to face centroids. In two dimensions, this
interpolation takes the form

F̃
n+ 1

2

f = F
n+ 1

2

f + |x̄|(F
n+ 1

2

f<<sign(x̄)ed
− F

n+ 1

2

f) (4.2)

20

where x̄ is the centroid in the direction d perpendicular to the face normal. In three dimen-
sions, define (x̄, ȳ) to be the coordinates of the centroid in the plane (d1, d2) perpendicular
to the face normal.

F̃
n+ 1

2

f =F
n+ 1

2

f (1− x̄ȳ + |x̄ȳ|)+ (4.3)

F
n+ 1

2

f<<sign(x̄)ed
1 (|x̄| − |x̄ȳ|)+ (4.4)

F
n+ 1

2

f<<sign(x̄)ed
2 (|ȳ| − |x̄ȳ|)+ (4.5)

F
n+ 1

2

f<<sign(x̄)ed
1
<<sign(x̄)ed

2 (|x̄ȳ|) (4.6)

Centroids in any dimension are normalized by ∆x and centered at the cell center. This
interpolation is only done if the shifts that are used in the interpolation are uniquely-defined
and single-valued. We use a conservative discretization for the flux divergence.

κv∇ · ~F ≡ (D · ~F) = ((
D−1∑

d=0

∑

±=+,−

∑

f∈F
d,±
v

±αf F̃
n+ 1

2

f) + αB
v F

B,n+ 1

2
v) (4.7)

where where FB is the flux at the irregular boundary, wherein lies most of the difficulty
in this operator.

4.1.2 Flux at the Boundary

In all cases, we construct the gradient at the boundary and use equation 4.1 to construct
the flux.

For Neumann boundary conditions, the gradient of the solution is specified at the
boundary.

For Dirichlet boundary conditions, the gradient normal to the boundary is determined
using the value at the boundary. The gradients tangential to the boundary are specified.
For irregular boundaries, the procedure for calculating the gradient normal to the boundary
is given in section 2.1.1.5. For domain boundaries, we construct a quadratic function with
the value at the boundary and the two adjacent points along the normal to construct the
gradient. For example, say we are at the low side of the domain with a value φ0 at the
boundary. The normal gradient is given by. that means that normal gradient is given by

(∇φ)x
−

1

2
,j,k

=
9(φ0,j,k − φ0)− (φ1,j,k − φ0)

3∆x

21

Chapter 5

EBAMRElliptic Interface

5.1 Overview

The principal EBAMRElliptic classes are:

• EBPoissonOp conforms to the MGLevelOp interface and is used to solve Poisson’s
equation over a single level.

• EBAMRPoissonOp conforms to the AMRLevelOp interface and is used to solve Pois-
son’s (or Helmholtz’s) equation over an AMR hierarchy with constant coefficients.

• EBConductivityOp conforms to the AMRLevelOp interface and is used to solve
Poisson’s (or Helmholtz’s) equation over an AMR hierarchy with variable coeffi-
cients.

• EBViscousTensorOp conforms to the AMRLevelOp interface and is used to solve
the viscous tensor equation over an AMR hierarchy with variable coefficients.

• EBAMRTGA advances a solution of the heat equation one step using the TGA [8]
algorithm.

The first two, since their interface is well described in the Chombo Design document
[2] will only be described through their factories, since the factories are the parts of the
interface that the user actually has to use in order to use the class.

5.2 EBPoissonOpFactory

Factory to generate an operator to solve (α + βL)φ = ρ. This follows the MGLevelOp
interface.

EBPoissonOpFactory(const EBLevelGrid& eblgs,

const RealVect& dx,

22

const RealVect& origin,

const int& orderEB,

const int& numPreCondIters,

const int& relaxType,

RefCountedPtr<BaseDomainBCFactory> domainBCFactory,

RefCountedPtr<BaseEBBCFactory> ebBcFactory,

const Real& alpha,

const Real& beta,

const IntVect& ghostCellsPhi,

const IntVect& ghostCellsRhs);

• eblgs : layout of the level

• domainFactory : domain boundary conditions

• ebBCFactory: eb boundary conditions

• dxCoarse: grid spacing at coarsest level

• origin: offset to lowest corner of the domain

• refRatio: refinement ratios. refRatio[i] is between levels i and i+1

• preCondIters: number of iterations to do for pre-conditioning

• relaxType: 0 means point Jacobi, 1 is Gauss-Seidel, 2 is line solver.

• orderEB: 0 to not do flux interpolation at cut faces.

• alpha: coefficient of identity

• beta: coefficient of Laplacian.

• ghostCellsPhi: Number of ghost cells in phi, correction (typically one)

• ghostCellsRhs: Number of ghost cells in RHS, residual, lphi (typically zero) Ghost
cell arguments are there for caching reasons. Once you set them, an error is thrown
if you send in data that does not match.

5.3 EBAMRPoissonOpFactory

Factory to generate an operator to solve (α + βL)φ = ρ. This follows the AMRLevelOp
interface.

23

EBAMRPoissonOpFactory(const Vector<EBLevelGrid>& eblgs,

const Vector<int>& refRatio,

const Vector<RefCountedPtr<EBQuadCFInterp> >& quadCFI,

const RealVect& dxCoarse,

const RealVect& origin,

const int& orderEB,

const int& numPreCondIters,

const int& relaxType,

RefCountedPtr<BaseDomainBCFactory> domainBCFactory,

RefCountedPtr<BaseEBBCFactory> ebBcFactory,

const Real& alpha,

const Real& beta,

const Real& time,

const IntVect& ghostCellsPhi,

const IntVect& ghostCellsRhs,

int numLevels = -1);

• eblgs : layouts at each AMR level

• domainFactory : domain boundary conditions

• ebBCFactory: eb boundary conditions

• dxCoarse: grid spacing at coarsest level

• origin: offset to lowest corner of the domain

• refRatio: refinement ratios. refRatio[i] is between levels i and i+1

• preCondIters: number of iterations to do for pre-conditioning

• relaxType: 0 means point Jacobi, 1 is Gauss-Seidel, 2 is line solver.

• orderEB: 0 to not do flux interpolation at cut faces.

• alpha: coefficient of identity

• beta: coefficient of Laplacian.

• time: time for boundary conditions

• ghostCellsPhi: Number of ghost cells in phi, correction (typically one)

• ghostCellsRhs: Number of ghost cells in RHS, residual, lphi (typically zero) Ghost
cell arguments are there for caching reasons. Once you set them, an error is thrown
if you send in data that does not match. Use numlevels = -1 if you want to use the
size of the vectors for numlevels.

24

5.4 EBAMRTGA

EBAMR implementation of the TGA algorithm to solve the heat equation.

EBAMRTGA(const Vector<EBLevelGrid>& eblg,

const Vector<int>& refRatio,

const Vector<RefCountedPtr<EBQuadCFInterp> >& quadCFI,

const RealVect& dxCoar,

const RefCountedPtr<BaseDomainBCFactory>& domainBCFactory,

const RefCountedPtr<BaseEBBCFactory>& ebBCFactory,

const int& numlevels,

const RealVect& origin,

const Real& diffusionConst,

const IntVect& ghostCellsPhi,

const IntVect& ghostCellsRHS,

const int& numSmooths,

const int& iterMax,

const int& ODESolver,

const int& numMGCycles,

const int& numPreCondIters,

const int& relaxType,

const int& verbocity);

5.5 Example

5.6 Snippet to solve Poisson’s equation

void solve(const PoissonParameters& a_params,

Vector<LevelData<EBCellFAB>* >& phi,

Vector<LevelData<EBCellFAB>* >& rhs,

Vector<DisjointBoxLayout>& grids,

Vector<EBISLayout>& ebisl)

)

{

int nvar = 1;

//create the solver

AMRMultiGrid<LevelData<EBCellFAB> > solver;

pout() << "defining solver" << endl;

BiCGStabSolver<LevelData<EBCellFAB> > newBottomSolver;

newBottomSolver.verbosity = 0;

defineSolver(solver, grids, ebisl, newBottomSolver, a_params,1.e99);

pout() << "solving " << endl;

25

//solve the equation

solver.solve(phi, rhs, a_params.maxLevel, 0);

}

5.7 Snippet to Project a Cell-Centered Velocity Field

void projectVel(

const Vector< DisjointBoxLayout >& a_grids,

const Vector< EBISLayout >& a_ebisl,

const PoissonParameters& a_params)

const int& a_dofileout,

const bool& a_isFine)

Vector<LevelData<EBCellFAB>* >& velo,

Vector<LevelData<EBCellFAB>* >& gphi)

{

int nlevels = a_params.numLevels;

RealVect dxLevCoarsest = RealVect::Unit;

dxLevCoarsest *=a_params.coarsestDx;

ProblemDomain domLevCoarsest(a_params.coarsestDomain);

RealVect dxLev = dxLevCoarsest;

Real domVal = 0.0;

NeumannPoissonDomainBCFactory* domBCPhi = new NeumannPoissonDomainBCFactory();

RefCountedPtr<BaseDomainBCFactory> baseDomainBCPhi = domBCPhi;

domBCPhi->setValue(domVal);

DirichletPoissonDomainBCFactory* domBCVel = new DirichletPoissonDomainBCFactory();

RefCountedPtr<BaseDomainBCFactory> baseDomainBCVel = domBCVel;

domBCVel->setValue(domVal);

NeumannPoissonEBBCFactory* ebBCPhi = new NeumannPoissonEBBCFactory();

ebBCPhi->setValue(domVal);

RefCountedPtr<BaseEBBCFactory> baseEBBCPhi = ebBCPhi;

Vector<LevelData<EBCellFAB>*> rhoinv;

const int bottomSolverType = 1;

Vector<EBLevelGrid> eblg (a_grids.size());

Vector<RefCountedPtr<EBQuadCFInterp> > quadCFI(a_grids.size(), NULL);

domLev = domLevCoarsest;

for(int ilev = 0; ilev < a_grids.size(); ilev++)

26

{

int nvar = 1;

int nref = a_params.refRatio[ilev];

eblg[ilev] = EBLevelGrid(a_grids[ilev], a_ebisl[ilev], domLev);

if(ilev > 0)

{

int nrefOld = a_params.refRatio[ilev-1];

ProblemDomain domLevCoar = coarsen(domLev, nrefOld);

quadCFI[ilev] = new EBQuadCFInterp(a_grids[ilev],

a_grids[ilev-1],

a_ebisl[ilev],

a_ebisl[ilev-1],

domLevCoar,

nrefOld, nvar,

*(eblg[ilev].getCFIVS()));

}

domLev.refine(nref);

}

EBCompositeCCProjector projectinator(eblg, a_params.refRatio, quadCFI,

a_params.coarsestDx,

RealVect::Zero,

baseDomainBCVel,

baseDomainBCPhi,

baseEBBCPhi,

rhoinv, false, true, -1, 3 ,40,1.e99, 1,

projectinator.project(velo, gphi);

}

27

Bibliography

[1] J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method for the
incompressible Navier-Stokes equations. J. Comput. Phys., 85:257–283, 1989.

[2] P. Colella, D. T. Graves, N.D. Keen, T. J. Ligocki, D. F. Martin, P.W. McCorquodale,
D. Modiano, P.O. Schwartz, T.D. Sternberg, and B. Van Straalen. Chombo Software
Package for AMR Applications - Design Document. unpublished, 2000.

[3] H. Johansen and P. Colella. A Cartesian grid embedded boundary method for Poisson’s
equation on irregular domains. J. Comput. Phys., 147(2):60–85, December 1998.

[4] Hans Johansen and Phillip Colella. A cartesian grid embedded boundary method for
Poisson’s equation on irregular domains. J. Comput. Phys., 1998.

[5] Hans Svend Johansen. Cartesian Grid embedded Boundary Finite Difference Methods
for Elliptic and Parabolic Partial Differential Equations on Irregular Domains. PhD
thesis, University of California, Berkeley, 1997.

[6] D. F. Martin and K. L. Cartwright. Solving Poisson’s equation using adaptive mesh
refinement. Technical Report UCB/ERI M96/66 UC Berkeley, 1996.

[7] P. Schwartz, M. Barad, P. Colella, and T. Ligocki. A Cartesian grid embedded bound-
ary method for the heat equation and Poisson’s equation in three dimensions. J.
Comput. Phys., 211(2):531–550, January 2006.

[8] E.H. Twizell, A.B. Gumel, and M.A. Arigu. Second-order, l0-stable methods for the
heat equation with time-dependent boundary conditions. Advances in Computational
Mathematics, 6:333–352, 1996.

28

