
The Workshop Package for EBChombo Geometry

Generation

P. Colella
D. T. Graves
T. Ligocki
P. Schwartz

B. Van Straalen

Applied Numerical Algorithms Group
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, CA

Tue, Feb 4, 2003

Contents

1 Introduction 1

2 Algorithm 2

2.1 Calculation of Edge Intersections . 2
2.2 Algorithm for d-dimensional cube sliced by a co-dimension 1 surface . . 3

3 API 4

3.1 Design . 4
3.2 Example . 6

1 Introduction

For some computations, it is possible to specify the domain of computation based upon
functional description of the boundary interface. The workshop package provides a sys-
tematic algorithm and API that will produce an embedded boundary description of the

1

interface which converges to second order with grid refinement to the functional descrip-
tion of the interface. Gueyffier, et. al. [1] solve a similar problem in their volume-of-fluid
method in three dimensions. We have used some of their ideas about renormalization in
this work.

This document specifies the workshop algorithm and the associated API.

2 Algorithm

The workshop algorithm provides a numerically convergent way to convert a functional
description of an interface to an embedded boundary description. Any given cell is either
entirely inside the covered region (covered), entirely outside the covered region (regular),
or intersected the cell by the interface (irregular). A workshop class must be able to
identify cells as such. Once a cell is identified to be irregular, the workshop class then
defines which direction is “up”. This determines which coordinate direction of the surface
is treated as the dependent variable in the cell (y = φ(x, z), for example). The workshop
class must then provide the intersection of the surface with coordinate lines that vary only
in the “up” direction.

2.1 Calculation of Edge Intersections

Given a surface, S, we have assumed that S is specified locally as a function. To fix
notation, suppose that at a given n-dimensional cell,E, a coordinate direction xi has been
specified as well as a the local function φ : Rn−1 → R, which describes S. For any
x ∈ ∂E, the intersection of S with the line in the xi direction that passes through x may
be calculated by evaluating φ(x1, x2, · · ·xi−1, xi+1, · · ·xn).

For the edges of E that don’t lie in the ei direction an iterative method such as Brent’s
Algorithm may be used to calculate the intersection or observe the non-intersection of S
with the edge. However for the special case of the discrete Divergence operator a simpler
method suffices. We now address this special case.

Denote the endpoints of such an edge by a′ and c′. Let a = a1, a2, ···ai−1, ai+1, ···an).
That is, a denotes the projection of a′ onto the space spanned by the n − 1 vectors ej
for j 6= i. Similarly, c denotes the projection of c′ on the same space.

If A = φ(a) > ai and C = φ(c) > ci or A = φ(a) < ai and C = φ(c) < ci, we
conclude that S does not intersect the edge. If A = φ(a) = ai or C = φ(c) = ci,
then S intersects an endpoint of the segment. If (A − ai)(C − ci) < 0 then there is an
intersection in the interior, which we estimate by linear interpolation.

2

2.2 Algorithm for d-dimensional cube sliced by a co-dimension 1

surface

Let Ω denote a polytope formed by the intersection of an d-dimensional cube with a
codimension one surface. Let Θ denote the portion of the surface that forms one of the
faces of Ω. Define B by B = ∂Ω−Θ. B comprises the faces of Ω that lie in coordinate
directions.

We consider the problem of computing moments over Ω, assuming that the intersec-
tions of Θ with the one-dimensional edges of Ω have been calculated.

Let k denote a multiindex of whole numbers, k = k1, ···kn. Let x
k denote a monomial

of order |k| = k1 + · · ·+ kn. That is,x
k = xk1

1 · · · xkn
n . Finally, let ei denote a unit vector

in the i direction.
Fix a whole number p > 0. For each coordinate direction, ei, for each multi-index, k,

of order p+1, we construct a vector field, F = F (k, i) = xk
ei. Note that the divergence

of F is either zero or a monomial of order p. Furthermore, every monomial of order p
may be obtained as the divergence of such an F . For example, let j denote a multi-index
of order p, for each i, F = xjxiei satisfies the condition 1

ji+1
∇ · F = xj.

Therefore, using the divergence theorem we may write:

C

∫
Ω

xjdΩ =

∫
Ω

∇ · F dΩ =

∫
∂Ω

F · n d(∂Ω) (1)

where n denotes the outward unit normal and C = ji + 1 is a constant.
If we let µ+

i and µ−

i denote the two faces of Ω with outward normal ei and −ei,
respectively, we can rearrange the terms of last integral to observe:

C

∫
Ω

xj dΩ−

∫
Θ

xjxin
θ
idθ (2)

=
∑
µ∈M

∫
µ

F · nµdµ (3)

=

∫
µ+

i

xk dµ+
i −

∫
µ−

i

xk dµ−

i . (4)

where n
θ denotes the normal to Θ and similarly for nµ. µ+

i and µ−

i are polytopes of
dimension n− 1.

We make the approximation that nθ
i is constant.

∫
Θ

xjxin
θ
idθ ≈ n

θ
i

∫
Θ

xjxidθ (5)

3

Using this approximation, we write an approximate divergence theorem expression:

C

∫
Ω

xj dΩ− n
θ
i

∫
Θ

xjxidθ (6)

≈
∑
µ∈M

∫
µ

F · nµdµ (7)

=

∫
µ+

i

xk dµ+
i −

∫
µ−

i

xk dµ−

i . (8)

We consider the the terms on the left as unknowns, and for the moment we assume
that the terms on the right are known as well as the normal to Θ, nθ. We replace ≈
by = and form the linear system of all such equations that can be obtained by varying
i and j in the construction of F (j, i). (Recall that |j| = p + 1.) Each monomial of
order p contributes n+ 1 unknowns to the systems. While each monomial of order p+ 1
contributes n equations to the system. Since the number of monmomials of order (p+1)
is always at least n more than the number of monomials of order p, the system is formally
overdetermined. In the event that the surface S is planar, our approximation is exact and
the system is consistent. In the event that S is not planar there may still be a plane that
passes through the edge intersections. Here again the system is consistent; the algorithm
recovers this plane. However, whether the system is consistent or not, approximate or
not, the column space of the associated matrix has full rank, and the system has a least
squares solution which we find.

Still assuming that the right hand side is known, nθ may be approximated by taking F

to be a constant vector field (p = 0). In this case the linear system is exactly determined
and we solve it exactly. Therefore the algorithm will be complete provided the right hand
sides are known. However, the right hand sides are moments over n − 1 dimensional
cubes sliced by codimension 1 surfaces. Hence after (n − 2) further iterations of the
algorithm we may express the right hand sides as (p + n − 1)th moments over a set of
one dimensional line segments, which may be conveniently calculated directly.

3 API

3.1 Design

Workshop is a class which inherits from GeometryService and implements the GeometryService
interface using the workshop algorithm. Workshop contains a BaseLocalGeometry class.
This base class is an interface which encapsulates the steps to the workshop algorithm
of reducing a surface that is locally defined as a function to an embedded boundary
description. The Workshop class is defined by its only constructor.

• Workshop(const BaseLocalGeometry& localGeometry)

Define the Workshop with the input local geometry description.

4

A BaseLocalGeometry-derived class must be able to answer the following questions:

• Is the box in question regular, or covered (or neither)? A regular box in this context
is a cell which is entirely outside the covered region. A covered box is entirely inside
the covered region.

• If the cell is irregular, which signed coordinate direction is “up” in the cell? The
up direction corresponds to the coordinate direction that corresponds to the largest
component of the normal to the boundary at this cell.

• For an irregular cell, given the independent variables, return the dependent variable.
Consider again figure ??. In this example, the y direction is the “up” direction and
the workshop-derived class must be able to return values of y in the cell given x

and z.

Given this, the BaseLocalGeometry class has the following pure virtual functions in its
interface:

• virtual bool isRegular(const Box& region, const Box& domain,

const RealVect& origin, const Real& dx)

const =0;

virtual bool isCovered(const Box& region, const Box& domain,

const RealVect& origin, const Real& dx)

const =0;

Return true if every cell in the input region is regular or covered. Argument region
is the subset of the domain. The domain argument specifies is the span of the
solution index space. The origin argument specifies the location of the lower-left
corner (the zero node) of the solution domain and the dx argument specifies the
grid spacing.

• virtual

int upDirection(const IntVect& iv,

const Box& domain,

const RealVect& a_origin,

const Real& a_dx) const = 0;

This returns the signed integer which most closely represents the normal direction of
the interface at an irregular cell (which coordinate direction has the largest normal
component). This will only be called if the cell is irregular.

• virtual

Real localFuncValue(const RealVect& independentCoords,

const int& upDirection,

const IntVect& a_iv,

const Box& a_domain,

const RealVect& a_origin,

5

const Real& a_dx) const = 0;

Return the value at the dependent coordinate given the independent coordinates.
The upDirection argument defines which coordinate is the dependent one.

• virtual

BaseLocalGeometry* new_baseLocalGeometry() const = 0;

Return a newly allocated derived class. The responsibility for deleting the memory
is left to the calling function.

3.2 Example

The Workshop class has the following usage pattern. The local geometry description is
defined and used to define the Workshop class. The Workshop is then used to define the
global EBIndexSpace.

class MyGeometry: public BaseLocalGeometry

{

....

};

void defineMyEBIS(const Box& domain,

const RealVect& origin,

const Real& dx)

{

MyGeometry myLocalGeom;

Workshop myWorkshop(myLocalGeom);

EBIndexSpace* ebisPtr = Chombo_EBIS::instance();

ebisPtr->define(domain, origin, dx, myWorkshop);

}

References

[1] Denis Gueyffier, Jie Li, Ali Nadim, Ruben Scardovelli, and Stephane Zaleski. Volume-
of-fluid interface tracking with smooth surface stress methods for three dimensional
flows. J. Comput. Phys., 152:423–456, 1999.

6

