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T (°C) Growth rate (ums?)
140 0.006
150 0.011
160 0.027

Table S1. Rate of growth of calcite in ACC films precipitated from solutions comprising [Ca?']

=10 mM, [Mg?*] =4 mM and [PAA] = 4 ug mL™ as measured at different temperatures.
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Figure S1. Characterization of the thicknesses of ACC and Mg-calcite films produced at [Ca?*]
= [Mg?*] = 10 mM and [PAA] = 4 ug mL*, where films were scratched prior to AFM analysis.
Mg-calcite films were prepared by crystallizing ACC precursor films at 150 °C. (a) ACC film
characterized by Polarised Optical Microscopy (POM) and (b) AFM. (c) A corresponding
height profile along the direction of the yellow arrow in (a). (d) Calcite films characterized by

POM, (e) characterized by AFM and (f) a corresponding height profile along the direction of

the black arrow in (d).
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Figure S2. Optical images of ACC films deposited at (a) 10 min, (b) 30 min and (c) 40 min

under the reaction conditions of [Ca?"] = [Mg?*] = 10 mM, [PAA]=4 pg mL™.
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Figure S3. ACC thin films produced at [Ca?*] = [Mg?*] = 10 mM and [PAA] = 4 pg mL™*
deposited on (a) poly(methyl methacrylate) (PMMA) coated glass, (b) poly(vinyl alcohol)
(PVA) coated silicon wafer, (¢) PDMS and (d) SiN TEM window grid. The ACC films were

intentionally scratched to show the difference between substrate and films.
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Figure S4. Elemental analysis at the ACC/ calcite interface for films produced at [Ca?*] =
[Mg#]=10 mM and [PAA] =4 pg mL%. (a) STEM-HAADF image of Mg and Ca of a partially
crystallized ACC film showing the ACC/ calcite boundary. (b) The corresponding EDX
spectrum. (c and d) HAADF-EDX maps of Mg and Ca respectively taken over the same

sample, showing that Ca and Mg are uniformly distributed across the ACC/ calcite interface.
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Figure S5. Graph showing the dependence of the growth rate of calcite in an ACC film (B)

(um sec™) produced under conditions [Ca?] = 10 mM, [Mg?*] = 4 mM, [PAA] =4 pug mL? as

a function of temperature. A linear relationship is seen between Inf and T
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Figure S6. Thickness-dependent transformation of ACC films prepared at [Ca?*] = 10 mM,
[Mg?]1 =10 mM and [PAA] = 4 ug ml. The initial ACC film was imaged by (a) optical and
(b) polarized optical microscopy. The gradient of colour indicates a gradient of increasing
thickness from centre to edge. (c-h) POM time sequences showing the controlled process of
nucleation and growth, where a single nucleation point was triggered by localized heating (c),
and crystal growth was carried on by uniform heating at the second step (120°C). The

preferential growth direction is indicated by the yellow arrows in (d-h).
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Figure S7. Schematic diagram of the experimental set-up for the controlled two-step method.
Nucleation can be triggered with localized high temperature (180°C) using a joule-heated silver
probe. The displacement of the silver probe is controlled by an xyz micromanipulator and the
sample is positioned on a uniformly-heated stage to sustain crystal growth. POM monitors the

formation and growth of the nascent crystals in real time.
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Figure S8. SEM images of ACC films produced under conditions [Ca?*] = [Mg?*] = 10 mM

and [PAA] = 4 ug mL™ (a) before and (b) after crystallization at 150 °C.
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Figure S9. Calcite films formed within an array of square microposts that are 10 um in size
and set 10 um apart from solution conditions [Ca?*] = 10 mM, [Mg?*] = 4 mM and [PAA] = 4
pg mL™L. (a) Calcite films with spherulitic structures were formed on crystallization at room

temperature, while (b) a large, 300 um single crystal domain of calcite is shown that was

formed using the 2-step heating method.
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Movie S1. Crystallization of ACC films prepared from solutions comprising [Ca®*] = [Mg?']
=10 mM and [PAA] =4 ug mL* at Ton = 150 °C.

Movie S2. Triggering nucleation at a single site using a local heating probe at 180 °C. The
ACC film was prepared from solutions comprising [Ca®*] = [Mg?*] = 10 mM and [PAA] = 4

pug mLL,

Movie S3. Transformation of ACC films sustained with uniform heating below Ton. The
ACC films were prepared from solutions comprising [Ca?*] = [Mg?*] = 10 mM and [PAA] = 4

ug mL?, and incubated at 120 °C (<Ton).

Movie S4. Crystallization of ACC films that were deposited on a silicon substrate patterned
with pillars. The ACC films were prepared from solutions comprising [Ca®"] = [Mg?'] = 10

mM and [PAA] = 4 ug mL™?, and crystallized at Ton = 150 °C.

Movie S5. Crystallization of an array of ACC discs that were prepared from solutions

comprising [Ca?*] = 10 mM, [Mg?*] = 4 mM and [PAA] = 4 pug mL™, and crystallized at Ton

=200 °C.
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