Research Data Leeds Repository
Supporting data for "Using Neural Networks to Deduce Polymer Molecular Weight Distributions from Linear Rheology"
Citation
Elliott, Robert J. and Cutillo, Luisa and Chinmay, Das and Mattsson, Johan and Read, Daniel J. (2025) Supporting data for "Using Neural Networks to Deduce Polymer Molecular Weight Distributions from Linear Rheology". University of Leeds. [Dataset] https://doi.org/10.5518/16891
Dataset description
Supporting data sufficient to reproduce the results of the related publication. The goal of the work is to predict the molecular weight distribution from the linear melt rheology of polystyrene. This dataset inlcudes testing data, python code, neural network models, and data used to setup conda environment for smooth running of python code.
Divisions: | Faculty of Engineering and Physical Sciences > School of Mathematics2 |
---|---|
License: | Creative Commons Attribution 4.0 International (CC BY 4.0) |
Date deposited: | 19 Jun 2025 14:22 |
URI: | https://archive.researchdata.leeds.ac.uk/id/eprint/14283 |
Files
Documentation
Data
Program
- 1. https://doi.org/10.5518/1689
- 2. https://archive.researchdata.leeds.ac.uk/view/divisions/SM/
- 3. https://archive.researchdata.leeds.ac.uk/id/eprint/1428
- 4. https://orcid.org/0009-0005-4718-2002
- 5. https://orcid.org/0000-0002-2205-0338
- 6. https://orcid.org/0000-0002-1454-6210
- 7. mailto:py19rje
- 8. https://archive.researchdata.leeds.ac.uk/1428/6/Data_Sources.txt
- 9. https://archive.researchdata.leeds.ac.uk/1428/6/Data_Sources.txt
- 10. https://archive.researchdata.leeds.ac.uk/1428/6/Data_Sources.txt
- 11. https://archive.researchdata.leeds.ac.uk/1428/6/Data_Sources.txt
- 12. https://archive.researchdata.leeds.ac.uk/1428/7/README_Elliott-etal_2025.txt
- 13. https://archive.researchdata.leeds.ac.uk/1428/7/README_Elliott-etal_2025.txt
- 14. https://archive.researchdata.leeds.ac.uk/1428/7/README_Elliott-etal_2025.txt
- 15. https://archive.researchdata.leeds.ac.uk/1428/7/README_Elliott-etal_2025.txt
- 16. https://archive.researchdata.leeds.ac.uk/1428/1/GPC_Data.zip
- 17. https://archive.researchdata.leeds.ac.uk/1428/1/GPC_Data.zip
- 18. https://archive.researchdata.leeds.ac.uk/1428/1/GPC_Data.zip
- 19. https://archive.researchdata.leeds.ac.uk/1428/1/GPC_Data.zip
- 20. https://archive.researchdata.leeds.ac.uk/1428/2/NN_Models.zip
- 21. https://archive.researchdata.leeds.ac.uk/1428/2/NN_Models.zip
- 22. https://archive.researchdata.leeds.ac.uk/1428/2/NN_Models.zip
- 23. https://archive.researchdata.leeds.ac.uk/1428/2/NN_Models.zip
- 24. https://archive.researchdata.leeds.ac.uk/1428/3/Rheo_Data.zip
- 25. https://archive.researchdata.leeds.ac.uk/1428/3/Rheo_Data.zip
- 26. https://archive.researchdata.leeds.ac.uk/1428/3/Rheo_Data.zip
- 27. https://archive.researchdata.leeds.ac.uk/1428/3/Rheo_Data.zip
- 28. https://archive.researchdata.leeds.ac.uk/1428/4/conda_env_PS.yml
- 29. https://archive.researchdata.leeds.ac.uk/1428/4/conda_env_PS.yml
- 30. https://archive.researchdata.leeds.ac.uk/1428/4/conda_env_PS.yml
- 31. https://archive.researchdata.leeds.ac.uk/1428/4/conda_env_PS.yml
- 32. https://archive.researchdata.leeds.ac.uk/1428/8/PS_MWD_Prediction_UPDATED.py
- 33. https://archive.researchdata.leeds.ac.uk/1428/8/PS_MWD_Prediction_UPDATED.py
- 34. https://archive.researchdata.leeds.ac.uk/1428/8/PS_MWD_Prediction_UPDATED.py
- 35. https://archive.researchdata.leeds.ac.uk/1428/8/PS_MWD_Prediction_UPDATED.py