Supporting Information

Contents

S 3	Chemical Formulae
S 4	Experimental section
S4	General Methods and Instrumentation
S5	Synthesis
S14	Photo-stability Testing
S15	Thermal-stability, Air-stability Testing
S16	Fluorescence Lifetime Measurements
S19	Optical Micrograph 7b
S20	U.V./vis. Spectra
S23	EPR Spectra
S28	¹ H, ¹³ C and ¹⁹ F NMR Spectra
S47	¹ H T ₁ Relaxation Time Measurements
S49	¹³ C T ₁ Relaxation Time Measurements
S51	HSQC NMR 7c
S52	Mass Spectra
S54	MO Calculations
S59	References

Chemical Formulae

CI-

CI

CI

ČΓ

6a

CI

CI

Experimental Section

General Methods and Instrumentation

Reagents were purchased commercially and were used as supplied. Reactions were performed under a nitrogen atmosphere using AR-grade solvents. Dried solvents were from a Pure Solv MD solvent purification system (Innovative Technology Inc.). The progress of reactions was monitored by TLC on pre-coated silica plates visualized by ultraviolet light. Column chromatography employed Merck Kieselgel (60 Å) F254 (230–400 mesh) silica and HPLC grade solvents. UV/vis. spectra were measured on a Perkin Elmer Lambda 35 UV/VIS Spectrometer. Steady state fluorescence spectra were measured on a Perkin Elmer LS 55. Lifetime measurements were made using an Edinburgh Instruments FLS980 fluorescence spectrophotometer. Proton, carbon and phosphorous NMR spectra were recorded on Bruker Advance 400, 500 or DPX300 spectrometers. Proton and carbon chemical shifts are quoted in parts per million (ppm) relative to SiMe₄, using residual non-deuterated solvent signals as the reference. Chemical shifts are corrected to CHCl₃ $\delta_{\rm H}$ = 7.26, $\delta_{\rm C}$ = 77.36. Coupling constants (J values) are quoted in Hertz (Hz). The splitting patterns are reported using the following abbreviations: br (broad), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and combinations thereof. ¹³C NMR Spectra (but not ¹⁹F NMR Spectra) were proton decoupled. A Bruker MaXis Impact spectrometer with electrospray (ES) ionisation source was used for high-resolution mass spectrometry (HRMS). LC-MS was performed using a system comprising an Ultimate3000 HPLC instrument with a Brucker Amazon Speed MS detector. The system ran with a Phenomenex Kinetex C18 (50 mm \times 2.1 mm \times 2.6 μ m) column and gradient elution with two binary solvent systems: MeCN/H₂O or MeCN/H₂O plus 0.1% formic acid. For polychlorinated species the accurate mass of most intense peak of the parent ion is quoted. The isotope distributions for the polychlorinated radicals, together with those calculated, are shown separately.

Synthesis

Pentadecachlorotrityl radical **2**., Pentadecachlorotriphenylmethane **1**^[1] was converted to the pentadecachlorotrityl radical **2** using both the (i) NaOH/DMSO/acetone (ii) I₂/Et₂O method ^[1a] and also the (i) Bu₄N⁺OH⁻ (ii) chloranil method. ^[2] Pentadecachlorotriphenylmethane **1** ¹H NMR (500 MHz, CDCl₃) δ 6.99 (s). Pentadecachlorotrityl radical **2** (UV/vis, CHCl₃, nm, log A) 284 (3.79), 366 (s, 4.12), 383 (4.40), 509 (2.97), 564 (2.94). Lit. (cyclohexane) 283 (3.74), 382 (4.57), 510 (3.07), 562 (3.08).

3-Fluorotriphenylmethanol **3a**. The required Grignard Reagent was prepared by refluxing 3fluorobromobenzene (4.8 g, 33 mmol) with magnesium (795 mg, 33 mmol) in dry diethyl ether (40 mL) for 40 min. Benzophenone (5.46 g, 30 mmol) in dry diethyl ether (20 mL) was added dropwise, the solution refluxed for a further 3 h and left at RT overnight. The mixture was partitioned between dil. HCl and diethyl ether and the ether extracts washed with NaH CO₃ solution and brine, dried with MgSO₄, filtered and evaporated to give the almost pure 3fluorotriphenylmethanol **3a** as a white crystalline solid (8.23 g, 93%). Further purification of a small sample by chromatography on silica (eluting first with DCM: hexane and then with DCM) followed by recrystallization from hexane gave the pure product.

¹H NMR (500 MHz, CDCl₃) δ 7.34–7.36 (m, 11H), 7.06 (m, 2H), 6.97 (m, 1H), 2.78 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 163.89 (d, J = 246 Hz), 149.78 (d, J = 6.5 Hz), 146.66 (d, J = 4 Hz), 129.65 (d, J = 8 Hz), 128.41 (s), 128.17 (s), 127.87 (s), 123.97 (d, J = 2.7 Hz), 115.43 (d, J = 22 Hz), 114. 44 (d, J = 21 Hz), 82.05 (d, J = 1.6 Hz).

¹⁹F NMR (470 MHz, CDCl₃) δ -113.28 (dd, J = 16, 9 Hz).

Positive ion HR-MS: m/z calcd. [M-OH]⁺: 261.1074; found (ESI): 261.1071.

3,5-Difluorotriphenylmethanol **3b**. In a similar manner 3,5-difluorobromobenzene (2.58 g, 13 mmol) with benzophenone (2.7 g, 15 mmol) gave 3,5-difluorotriphenylmethanol **3b** as a white

crystalline solid which was purified by column chromatography and recrystallized from hexane (2.56 g, 66%).

¹H NMR (500 MHz, CDCl₃) δ 7.29–7.35 (m, 6H), 7.21–7.26 (m, 4H), 6.85-6.90 (m, 2H), 6.72 (tt, 1H, J = 8.4, 2.3 Hz), 2.77 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 163.00 (dd, J = 248, 12 Hz), 151.18 (t, J = 8.1 Hz), 146.12 (s),

128.59 (s), 128.16 (s), 128.09 (s), 111.41 (dd, J = 20, 6 Hz), 102.99 (t, J = 26 Hz), 81.94 (s).

¹⁹F NMR (470 MHz, CDCl₃) δ -109.65 (t, J = 8.4 Hz).

Positive ion HR-MS: m/z calcd. [M-OH]⁺: 279.0980; found (ESI): 279.0976.

3,5,3',5'-*Tetrafluorotriphenylmethanol* **3c**. In a similar manner 3,5-difluorobromobenzene (9.65 g, 50mmol) with methyl benzoate (3.43 g, 25 mmol) gave 3,5,3',5'-tetrafluorotriphenylmethanol **3c** as a white crystalline solid which was purified by column chromatography (5.19 g, 63%).

¹H NMR (400 MHz, CDCl₃) δ 7.35–7.40 (m, 3H), 7.21–7.23 (m, 2H), 7.06 (m, 2H), 6.83-6.86 (m, 4H), 6.76 (tt, 1H, J = 8.6, 2.3 Hz) 2.78 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 162.98 (dd, J = 248, 12 Hz), 149.86 (t, J = 8.1 Hz), 144.92 (s),

128.85 (s), 128.68 (s), 127.84 (s), 111.20 (dd, J = 20, 6 Hz), 103.49 (t, J = 26 Hz), 81.35 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -108.86 (t, J = 7.9 Hz).

Positive ion HR-MS: m/z calcd. [M-OH]⁺ 315.0803; found (ESI): 315.0793.

3-Fluorotriphenylmethane **4a**. Dimethyldichlorosilane (3.04 mL, 24 mmmol) was added to a stirred ice-cooled solution of sodium iodide (7.2 g, 48 mmol) in 1:1 DCM:acetone (240 mL). 3-fluorotriphenylmethanol **3a** (5.14 g, 18.5 mmol) in DCM (120 mL) was added. The milky white solution turned brown. After a further ca. 10min the mixture was diluted with dichloromethane (1 litre) and the DCM solution washed with aqueous sodium bisulfite and saturated brine, dried with magnesium sulfate, filtered and evaporated. The crude product was purified by chromatography on silica (eluting first with DCM: hexane and then with DCM) to

give a slightly pink crystalline solid (4.60 g, 95 % crude yield; the 1H NMR spectrum showed that it still contained a small amount of polydimethylsiloxane). Since the siloxane proved very difficult to wholly remove the product was used for the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.21–7.31 (m, 7H), 7.10 (m, 4H), 6.88 (m, 2H), 6.78 (m, 1H), 5.52 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 162.93 (d, J = 246 Hz), 146.59 (d, J = 6.8 Hz), 143.24 (s), 129.68 (d, J = 8 Hz), 129.37(s), 128.45 (s), 126.57 (s), 125.16 (d, J = 2.7 Hz), 116.41 (d, J = 22 Hz), 113.26 (d, J = 22 Hz) 56.55 (s).

¹⁹F NMR (470 MHz, CDCl₃) δ -113.28 (m).

Positive ion HR-MS: m/z calcd. [M-H]⁺: 261.1074; found (ESI): 261.1076.

3,5-Difluorotriphenylmethane **4b**. In a similar manner 3,5-difluorotriphenylmethanol **3b** (3.08 g) gave 3,5-difluorotriphenylmethane **4b** which was purified by column chromatography (2.14 g, 74% crude yield, containing a small amount of polydimethylsiloxane). This was used for the next step without further purification.

¹H NMR (500 MHz, CDCl₃) δ 7.23–7.33 (m, 4H), 7.22–7.27 (m, 2H), 7.10 (m, 4H), 6.64 (m, 3H), 5.49 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 163.33 (dd, J = 248, 13 Hz), 148.39 (s), 142.86(s), 129.63 (s), 128.92 (s), 127.17 (s), 112.71 (dd, J = 20, 6 Hz), 102.24 (t, J = 26 Hz), 56.83 (s).

¹⁹F NMR (470 MHz, CDCl₃) δ -110.1 (t, J = 8.0 Hz).

Positive ion HR-MS: m/z calcd. [M-H]⁺: 279.0980; found (ESI): 279.0932.

3,5,3'5'-*Tetrafluorotriphenylmethane* **4c.** In a similar manner 3, 5, 3', 5'tetrafluorotriphenylmethanol **3c** (3.32 g) gave 3,5-difluorotriphenylmethane **4c** which was purified by column chromatography (2.48 g, 78% crude yield, containing a small amount of polydimethylsiloxane). This was used for the next step without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.17 (m, 3H), 7.07 (d, 2H, J = 7.3 Hz), 6.71 (tt, 2H, J = 8.8, 2.3 Hz), 6.59-6.5 (m, 4H), 5.5 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 163.42 (dd, J = 249, 13 Hz), 145.67 (s), 141.37 (s), 129.46 (s), 129.20 (s), 127.71 (s), 112.62 (m), 102.83 (t, J = 25 Hz), 56.32 (s).

¹⁹F NMR (376 MHz, CDCl₃) δ -109.37 (t, J = 7.8 Hz).

Positive ion HR-MS: m/z calcd. [M-H]⁺: 315.0803; found (ESI): 315.0791.

3-Fluorotetradecachlorotriphenylmethane **5a**. Using an apparatus equipped with a reflux condenser connected to a funnel for trapping evolved gasses in water, 3-fluorotriphenylmethane **4a** (0.75 g) and disulfurdichloride (0.25 mL) in sulfuryl chloride (20 mL) was added dropwise (45 min) to a stirred, refluxing solution of aluminium trichloride (0.19 g) in sulfuryl chloride (50 mL). Under continuing reflux the volume of the solution slowly decreased and, after about 2.5 h, more sulfuryl chloride (60 mL) needed to be added. After a total of 5h reflux, most of the remaining sulfuryl chloride was distilled off and water added dropwise to the ice-cooled flask. The white precipitate was filtered off and washed repeatedly with water, aqueous sodium bicarbonate, (again) water and dried. The product (1.99 g, essentially quantitative) was very insoluble in organic solvents but it was just possible to obtain ¹H and ¹⁹F NMR spectra and these, together with the mass spectrum suggested that this is a roughly 1:6 mixture of **1:5a** (**5a** being a mixture of *syn* and *anti* isomers). Since it was so insoluble, this mixture could not be separated and the crude product was used for the next stage. ¹H NMR (500 MHz, CDCl₃) δ 6.99 (s, **1**), 6.96 (s, **5a**), 6.94 (s, **5a**).

¹⁹F NMR (470 MHz, CDCl₃) δ -105.52 (s), -105.37 (s).

Negative ion HR-MS: m/z calcd. [M-H]⁻: 742.5542; found (ESI): 742.5547.

3,5-Difluorotridecachlorotriphenylmethane **5b**. In a similar manner 3,5difluorotriphenylmethane **4b** (0.88 g) gave 3,5-difluorotridecachlorotriphenylmethane **5b** (2.2 g, essentially quantitative).

¹H NMR (500 MHz, CDCl₃) δ 6.92 (s, 1H).

¹⁹F NMR (470 MHz, CDCl₃) δ -108.90 (s, 1F), -108.53 (s, 1F).

Negative ion HR-MS: m/z calcd. [M-H]⁻: 726.5838; found (ESI): 726.5856.

3,5,3',5'-*Tetrafluoroundecachlorotriphenylmethane* **5c**. In a similar manner 3,5-difluorotriphenylmethane **4c** (0.88 g) gave 3,5,3',5'-tetrafluoroundecachlorotriphenylmethane **5c** (1.7 g, 88% crude).

¹H NMR (400 MHz, CDCl₃) δ 6.89 (s, 1H).

¹⁹F NMR (376 MHz, CDCl₃) δ -108.85 (s, 1F), -108.80 (s, 1F), -108.58 (s, 1F), -108.43 (s, 1F). Negative ion HR-MS: m/z calcd. [M-H]⁻: 692.6458; found (ESI): 692.6463.

3-(n-Hexyloxy)-tetradecachlorotriphenylmethane 6a. Sodium (461 mg) was dissolved in nhexanol (10 mL) by heating at 100 °C for 2 h under a nitrogen atmosphere. After cooling to room temperature dry DMSO (10 mL) was added giving a 1M solution of the alkoxide. The roughly 1:6 mixture of pentadecachlorotriphenylmethane 1 and 3fluorotetradecachlorotriphenylmethane 5a from the preparation described above was added (600 mg) and the mixture heated at 100 °C for a further 4 h. After cooling to room temperature the mixture was acidified (dilute HCl) and extracted with Et₂O. The ether solution was washed with aqueous sodium bicarbonate solution and saturated brine solution, dried (MgSO₄), filtered and evaporated (heat was required to remove the n-hexanol). The crude product (2g) was purified by chromatography on silica eluting first with 10% and then 20% DCM in hexane to give 3-(n-hexyloxy)-tetradecachlorotriphenylmethane **6a** as a pale pink oil (240 mg, ca. 36%). (A ca. 3:4 mixture of syn and anti isomers)

¹H NMR (500 MHz, CDCl₃) δ 6.96 and 6.94 (both s, total 1H), 4.00 and 3.92 (close overlapping triplets J = 6.5 Hz and J = 6.6 Hz respectively, total 2H), 1.82 and 1.79 (m, total 2H), 1.54-1.43 (m, 2H), 1.38-1.29 (m, 4H), 0.93-0.86 (m, 3H). The sample contained a persistent impurity giving rise to a small triplet at δ 4.06

¹³C NMR (126 MHz, CDCl₃) δ 14.37, 22.89, 22.92, 25.77, 30.22, 30.54, 31.93, 31.93, 56.06, 56.33, 74.27, 74.53, 130.06, 130.12, 130.64, 130.96, 131.98, 132.90, 132.34, 132.76, 132.78, 132.80, 132.83, 133.35, 133.78, 133.81, 133.86, 133.88, 133.92, 133.95, 133.97, 134.22, 134.26, 134.32, 135.39, 135.41, 135.44, 135.64, 135.73, 136.76, 136.80, 136.83, 136.88, 151.93, 152.54.

Negative ion HR-MS: m/z calcd. [M-H]⁻: 824.6526; found (ESI): 824.6517.

3,5-Bis-(n-hexyloxy)-tridecachlorotriphenylmethane **6b**. In a similar manner, but using a 3:1 mixture of n-hexanol DMSO and 5 h reaction time. and a 3.5difluorotridecachlorotriphenylmethane **5**b (1 **g**) gave 3,5-bis-(n-hexyloxy)tridecachlorotriphenylmethane **6b** (760 mg, 62%) as pale pink crystals.

¹H NMR (500 MHz, CDCl₃) δ 6.92 (s, 1H), 3.99 and 3.91 (both two close overlapping triplets J = 6.5 Hz, total 4H), 1.82 and 1.79 (m, total 4H), 1.54-1.43 (m, 4H), 1.39-1.29 (m, 8H), 0.93-0.90 (m, 6H).

 13 C NMR (126 MHz, CDCl₃)

δ 14.39, 22.91, 25.81, 30.26, 31.93, 31.95, 55.58, 74.14, 74.40, 125.39, 127.32, 128.72, 132.
64, 132.70, 133.64, 133.70, 133.79, 134.28, 134.34, 134.61, 135.36, 135.53, 137.11, 137.23, 151.58, 152.42.

Negative ion HR-MS: m/z calcd. [M-H]⁻: 890.7805; found (ESI): 890.7824.

In an attempt to optimise the yield, the reaction was performed/attempted using 'neat' n-hexanol; 3:1 n-hexanol: DMSO; 1:1 n-hexanol: DMSO; 1:3 n-hexanol: DMSO; and 'neat' DMSO. The best yield and purest product was obtained using the 3:1 mixture.

3,5,3',5'-Tetrakis-(*n*-hexyloxy)-undecachlorotriphenylmethane **6c**. In a similar manner, using a 3:1 mixture of n-hexanol and DMSO and a 6 h reaction time, 3,5,3',5'tetrafluoroundecachlorotriphenylmethane **5c** (1 g) gave 3,5,3'-tris-(n-hexyloxy)-5'fluorododecachlorotriphenylmethane (434 mg, 27%) and 3,5,3',5'-tetrakis-(n-hexyloxy)- undecachlorotriphenylmethane **6c** (195 mg, 11%) both as pale pink oils. Additional amounts (ca 200 mg, 11%) of compound **6c** were obtained by treating the trisubstitution product again in the same way.

¹H NMR (500 MHz, CDCl₃) δ 6.90 (s, 1H), 3.98 and 3.91 (both two close overlapping triplets J = 6.5 Hz, total 8H), 1.80 (m, 8H), 1.48 (m, 8H), 1.34 (m, 16H), 0.90 (m, 12H).

¹³C NMR (101 MHz, CDCl₃)

δ 14.38, 22.91, 22.92, 25.82, 30.27, 31.94, 54.32, 74.02, 74.30, 124.95, 127.34, 127.38, 128. 77, 128.90, 132.44, 132.26, 133.45, 134.37, 135.21, 135.26, 135.56, 151.65, 151.74, 152.19, 152.34.

Negative ion HR-MS: m/z calcd. [M-H]⁻: 1023.0367; found (ESI): 10.230342.

3-(n-Hexyloxy)-tetradecachlorotriphenylmethyl radical **7a.** Under an atmosphere of nitrogen and in a flask protected from the light, 3-(n-hexyloxy)-tetradecachlorotriphenylmethane **6a** (75 mg) was added to a stirred mixture of tetrabutylammmonium hydroxide (0.6 mL, 40% aqueous solution), THF (15 mL) and DMSO (5 mL). After 2 h stirring at room temperature chloranil (260 mg) was added and after a further 1.5 h the mixture was partitioned between Et₂O and dilute HCl. The Et₂O solution was washed with aqueous sodium bicarbonate and saturated brine solution, dried (MgSO₄), filtered and evaporated. The crude product was chromatographed on silica eluting with 5% DCM in hexane to give the 3-(n-hexyloxy)tetradecachlorotriphenylmethyl radical **7a** as a bright red solid (59 mg, 79%).

(UV/vis, CHCl₃, nm, log A) 282 (3.75), 366 (s, 4.18), 385 (4.47), 513 (3.02), 564 (3.02).

¹H NMR (500 MHz, CDCl₃) δ 1.98 (br s, 1H), 1.84 (br s, 1H), 1.35 (br s, 4H), 1.21 (br s, 2H), 0.90 (br s, 3H)

¹³C NMR (126 MHz, CDCl₃) δ 13.93, 22.87, 25.76, 30.80, 30.86.

Negative ion HR-MS: m/z calcd. [M]⁻: 824.6526; found (ESI): 824.6505 (isotope distribution shown below).

3,5-Bis-(n-hexyloxy)-tridecachlorotriphenylmethyl radical **7b**. In a similar manner 3,5-bis-(n-hexyloxy)-tridecachlorotriphenylmethane **6b** (175 mg) gave the 3,5-bis-(n-hexyloxy)-tridecachlorotriphenylmethyl radical **7b** (10 mg, 58%) as a bright red solid which was recrystallized from EtOH.

(UV/vis, CHCl₃, nm, log A) 283 (3.83), 366 (s, 4.34), 384 (4.55), 518 (3.08), 569 (3.12). ¹H NMR (500 MHz, CDCl₃) δ 1.98 (br s, 2H), 1.84 (br s, 2H), 1.35 (br s, 8H), 1.21 (br s, 4H), 0.90 (br s, 6H)

¹³C NMR (126 MHz, CDCl₃) δ 14.30, 22.85, 25.74, 30.64, 30.76.

Negative ion HR-MS: m/z calcd. [M]⁻: 890.7805; found (ESI): 890.7807 (isotope distribution shown below).

3,5,3',5'-*Tetrakis-(n-hexyloxy)-undecachlorotriphenylmethyl radical* **7c.** Under an atmosphere of nitrogen and in a flask protected from the light, 3,5,3',5'-tetrakis-(n-hexyloxy)undecachlorotriphenylmethane **6c** (350 mg) was added to a stirred solution of powdered NaOH (250 mg) in Et₂O (17 mL) and DMSO (3 mL). After 2 days this reaction mixture was decanted into a second flask (also protected from the light) containing iodine (2 g) in Et₂O (100 mL). After stirring for a further 2 days at room temperature this solution was washed with sodium thiosulfate, dilute HCl, aqueous sodium bicarbonate and brine, dried (MgSO₄), filtered and evaporated to give the 3,5,3',5'-tetrakis-(n-hexyloxy)-undecachlorotriphenylmethyl radical **7c** as a bright red oil (252 mg, 72%).

(UV/vis, CHCl₃, nm, log A) 283 (3.83), 365 (s, 4.30), 382 (4.54), 517 (3.03), 565 (3.18).

¹H NMR (500 MHz, CDCl₃) δ 1.99 (br s, 4H), 1.85 (br s, 4H), 1.35 (br s, 16H), 1.21 (br s, 8H), 0.89 (br s, 12H)

¹³C NMR (101 MHz, CDCl₃) δ 14.37, 22.92, 25.84, 30.61, 30.85.

Posative ion HR-MS: m/z calcd. [M]⁺: 1023.0356; found (ESI): 10.230342 (isotope distribution shown below).

The 2D NMR spectra show cross-peaks indicating ${}^{1}\text{H}/{}^{1}\text{H}$ coupling between $\delta_{\text{H}}/\delta_{\text{H}} = 0.87/1.35$ and 1.21/1.35 but no cross peaks for the signals at δ 1.85 and 1.99.

The HSQC ${}^{1}H/{}^{13}C$ 2D correlation spectrum shows cross-peaks between δ_{H}/δ_{C} 0.87/14.37, 1.21/25.84, 1.35/22.92, 1.35/30.85, 1.85/30.61 and 1.99/30.61.

3-Fluorotetradecachlorotriphenylmethyl radical, **10a**. Was made from 3-fluorotetradecachlorotriphenylmethane **5a** in the same manner.

Negative ion HR-MS: m/z calcd. [M]⁻: 742.5542; found (ESI): 742.5524 (isotope distribution shown below).

This product contained ca. 20% 2 which could not be removed.

3,5-Difluorotridecachlorotriphenylmethyl radical, **10b**. Was made from 3,5difluorotridecachlorotriphenylmethane **5c** in the same manner.

Negative ion HR-MS: m/z calcd. [M]⁻: 726.5838; found (ESI): 726.5841 (isotope distribution shown below).

This product contained ca. 5% **10a** which could not be removed.

Photo-stability Testing

Figure S1. Apparatus used for photostability testing. (left) assembled for use. (right) cover removed.

The relative photo-stabilities of the radicals (Figure 2 and Table 2) were determined using the apparatus shown (left assembled for use; right sample and cover removed). When assembled, the 450 lumen LED light source (main emission 410-700 nm) was located 5 cm from the front of the 1 cm quartz UV cell. After a measured time interval the cell was removed and the UV/vis. spectrum recorded, the sample replaced and the process repeated. The rate of photodecomposition was determined using the disappearance of the narrow peak at ca 384 nm from the slope of the plot of $log_{10}((A_t-A_{inf})/(A_0-A_{inf}))$ against time where A_t is the absorbance at (accumulated) time t, A_0 the initial value and A_{inf} the absorbance at long reaction time.

Thermal-stability, Air-stability Testing

Figure S2. Apparatus used for thermal stability testing. (left) assembled for use. (right) disassembled.

The stability of solutions of the radicals when heated in the air was investigated using the apparatus shown; left assembled for use and right with the top and sample removed. In this a stirred dilute solution in mineral oil was heated within an aluminium block (which excluded the light). This top contained a hole through which the thermocouple extends half way down the wall of the block (to the level of the solution). There was also a very small hole in the centre of the lid which was just large enough to accommodate two fine syringe needles; one used to add/remove small samples and the other (for experiments using an inert atmosphere)) to introduce a gentle stream of nitrogen. Periodically small samples were removed, and the UV/vis spectrum measured in 1cm path-length quartz UV microcells.

Fluorescence Lifetime Measurements

Lifetime measurements were made using an Edinburgh Instruments FLS980 fluorescence spectrophotometer. Excitation: 473 nm, pulsed diode laser (EPL-475), repetition rate: 10MHz, pulse peak power: 150 mW, laser pulse width: 79.5 ps. Detector: high-speed redsensitive PMT (Hamamatsu H10720-20 PMT), emission slit width: 16 nm. Instrument response function (IRF) collected with colloidal silica dispersed in water (LUDOX HS-30). Lifetime fitting used Edinburgh Instruments FL980 software using the equation:

$$f(t) = \sum \beta_n e^{-t/\tau_n}$$

PAKAM	VALUE/NS	SID. DEV./NS	PAKANI	VALUE
T ₁	0.24	0.05	B1	0.06
T ₂	16.89	0.02	B2	0.25

Figure S3. Excited state fluorescence decay 'parent radical' 2

PARAM	VALUE/NS	STD. DEV./NS	PARAM	VALUE
T ₁	0.85	0.01	B1	0.34
T_2	20.11	0.12	B2	0.04

Figure S4. Excited state fluorescence decay (HxO)1 radical 7a

PARAM	VALUE/NS	STD. DEV./NS	PARAM	VALUE
T ₁	0.58	0.02	B1	0.3

Figure S5. Excited state fluorescence decay $(HxO)_2$ radical 7b

Optical Micrograph

Figure S6. Optical Micrograph. Radical 7b recrystallized from ethanol. Crossed polarizers.

UV/vis Spectra

2, Parent radical			7a, Hx	xO-1	7b, Hx	0-2	7c, HxC)-4	
cy-hexa	ne ^[1a]	Chlore	oform ^a	Chlorot	form ^a	Chlorof	orm ^b	Chlorofo	orm ^c
283	3.74	284	3.79	282	3.75	283	3.83	283	3.83
		366	4.12	366	4.18	366	4.24	365	4.30
382	4.57	383	4.40	385	4.47	384	4.55	382	4.54
510	3.07	509	2.97	513	3.02	518	3.08	517	3.03
562	3.08	564	2.94	564	3.02	569	3.12	565	3.18

Table S1. Radical $\lambda_{max.}$ (nm) and $log_{10}A$ values

^a Single measurement. ^b $log_{10}A$ Average of two measurements. ^c $log_{10}A$ Average of three

measurements.

Figure S7. Normalised (Offset) UV spectra in Chloroform. Black **2**, Parent radical; Red **7a**, HxO-1; Blue **7b**, HxO-2; Green **7c**, HxO-4

Figure S8. Solvent dependence of the UV/vis spectrum of the radical **7b**, HxO-2. (Normalised, offset) spectra in a range of solvents. Wavelength of the main maximum hexane 382.6 nm, ethanol 382.6 nm, diethyl ether 382.6 nm, acetone 382.6 nm, acetonitrile 382.9 nm, dichloromethane 384.4 nm and benzene 386.6 nm.

EPR Spectra

EPR spectra were obtained through the EPSRC National EPR Facility at the University of Manchester. A Bruker EMX Micro spectrometer, equipped with a Bruker 4122SHQ resonator was used. Sample cooling and temperature control was achieved using a Bruker ER4141VT liquid nitrogen boil-off accessory. Samples were measured in non-saturating conditions with typical measurement parameters, Microwave Power 2 mW, Modulation Amplitude 0.1 G. Reported g values were corrected using a Bruker Strong Pitch calibration standard measured at the same field sweep rate. Dilute solutions of the radicals in CH₂Cl₂ were employed and the degree of dilution and the temperature adjusted to maximise the resolution of the natural abundance ¹³C satellites. Gererally a temperature of 200K was found to be satisfactory. For radicals **2, 8a** and **8b** great care was taken to protect the solutions from exposure to the light. Spectra were fitted and the relevant parameters extracted using Easyspin-5.2.35.

	g-value	a _{αH}	a _{ipso}	aortho
2, Parent radical ^[a]	2.0028	84	36.3	33
2, literature values ^{[2] [b]}	2.0028	84	36.6	30.1
8a, F-1 ^[a, c]	2.0029	84.4	-	-
8b , F-2 ^[a, d]	2.0030	85	-	-
7a, HxO-1 ^[a]	2.0030	83.5	-	-
7b, HxO-2 ^[a]	2.0030	84	36.7	33

Table (S2.	EPR	parameters.
---------	-----	-----	-------------

^[a] CH₂Cl₂ solution 200 K. ^[b] CFCl₃ solution 163 K. ^[c] Contained ca. 20% **2**. ^[d]Contained ca. 5% **8a**.

Figure S9. Parent Radical 2 showing the ¹³C satellites, 9.439760 GHz, 200K, 0.2modAmp.

Figure S10. (HxO)₂ Radical 7b showing the ¹³C satellites, 9.453835 GHz, 200K, 0.2modAmp.

Figure S11. Parent Radical 2 enhanced gain, showing the α -carbon ¹³C satellites, 9.860305 GHz.

Figure S12. F₁ Radical **8a** enhanced gain, showing the α -carbon ¹³C satellites, 9.877490 GHz.

Figure S13. F_2 Radical 8b enhanced gain, showing the α -carbon ¹³C satellites, 9.879077 GHz.

Figure S14. (HxO)₁ Radical **7a** enhanced gain, showing the α -carbon ¹³C satellites, 9.863459 GHz.

Figure S15. (HxO)₂ Radical 7b enhanced gain, showing the α -carbon ¹³C satellites, 9.864073 GHz.

 ^{1}H , ^{13}C and ^{19}F NMR Spectra

Figure S16. ¹H NMR (500 MHz, CDCl₃) 3a

Figure S17. ¹³C NMR (126 MHz, CDCl₃) 3a

Figure S18. ¹⁹F NMR (470 MHz, CDCl₃) 3a

Figure S19. ¹H NMR (500 MHz, CDCl₃) 3b

Figure S21. ¹⁹F NMR (470 MHz, CDCl₃) 3b

Figure S22. ¹H NMR (400 MHz, CDCl₃) 3c

Figure S23. ¹³C NMR (126 MHz, CDCl₃) **3c**

-108.1 -108.2 -108.3 -108.4 -108.5 -108.6 -108.7 -108.8 -108.9 -109.0 -109.1 -109.2 -109.3 -109.4 -109.5 -109.6 -109.7 -109.8 -109.9 -110

Figure S24.¹⁹F NMR (376 MHz, CDCl₃) 3c

Figure S25. ¹H NMR (400 MHz, CDCl₃) 4a

-112.4 -112.5 -112.6 -112.7 -112.8 -112.9 -113.0 -113.1 -113.2 -113.3 -113.4 -113.5 -113.6 -113.7 -113.8 -113.9 -114.0 -114.1 -114.2 -114.3

Figure S27. ¹⁹F NMR (470 MHz, CDCl₃) **4a**

Figure S28. ¹H NMR (500 MHz, CDCl₃) 4b

-109.0 -109.1 -109.2 -109.3 -109.4 -109.5 -109.6 -109.7 -109.8 -109.9 -110.0 -110.1 -110.2 -110.3 -110.4 -110.5 -110.6 -110.7 -110.8 -110.9 -111.0

Figure S30. ¹⁹F NMR (470 MHz, CDCl₃) 4b

Figure S31. ¹H NMR (400 MHz, CDCl₃) 4c

Figure S33. ¹⁹F NMR (376 MHz, CDCl₃) 4c

Figure S34. ¹H NMR (500 MHz, CDCl₃, expansion) saturated solution of the crude product of chlorination of **4a.** (a mixture of **5a** *syn* and *anti* isomers and **1**)

Figure S35 ¹⁹F NMR (470 MHz, CDCl₃) saturated solution of the crude product of chlorination of **4a.** (*syn* and *anti* isomers)

Figure S36. ¹H NMR (500 MHz, CDCl₃) crude product, saturated solution, 5b.

Figure S37. ¹H NMR (400 MHz, CDCl₃) **5b**, expansion showing ArH impurities in the crude product.

Figure S38. 19 F NMR (470 MHz, CDCl₃) crude product, saturated solution, **5b**

Figure S39. 1 H NMR (400 MHz, CDCl₃) crude product, saturated solution, 5c

Figure S40. ¹H NMR (400 MHz, CDCl₃) **5c**, expansion showing ArH impurities in the crude product.

Figure S41. ¹⁹F NMR (376 MHz, CDCl₃) crude product, saturated solution, **5**c

Figure S42. ¹H NMR (500 MHz, CDCl₃) 6a (syn and anti isomers)

S41

Figure S45. ¹³C NMR (126 MHz, CDCl₃) 6b

Figure S46. ¹H NMR (500 MHz, CDCl₃) 6c

Figure S47. ¹³C NMR (101 MHz, CDCl₃) 6c

Figure S48. ¹H NMR (500 MHz, CDCl₃) 7a

Figure S49. ¹³C NMR (126 MHz, CDCl₃) 7a

Figure S50. ¹H NMR (500 MHz, CDCl₃) **7b**

Figure S51. ¹³C NMR (126 MHz, CDCl₃) 7b

Figure 52. ¹H NMR (500 MHz, CDCl₃) **7c**

Figure S53. ¹³C NMR (101 MHz, CDCl₃) 7c

¹H T₁ Relaxation Time Measurements

Table S3.	¹ H NMR T	Relaxation times
-----------	----------------------	------------------

Peak name	F2 [ppm]	T1 [s]	error	fitInfo
1	2.013	0.00946	0.003171	Done
2	1.889	0.00992	0.003021	Done
3	1.371	0.0483	0.002746	Done
4	1.236	0.0164	0.002935	Done
5	0.919	0.127	0.003996	Done

Figure S54. Fittings of ¹H NMR T₁ relaxation data

¹³C T₁ Relaxation Time Measurements

Table S4. ¹³ C NMR T ₁ Relaxation tim

Peak name	F2 [ppm]	lo	error	T1 [s]	error
1	30.546	1.18e+08	4.811e+06	0.310	0.02881
2	30.333	1.77e+08	7.855e+06	0.120	0.01176
3	25.548	3.08e+08	9.198e+06	0.178	0.01194
4	22.632	4.89e+08	1.322e+07	0.605	0.03616
5	14.077	4.95e+08	8.446e+06	0.907	0.03337

Figure S55. Fittings of ¹H NMR T₁ relaxation data

HSQC NMR

Figure S56. HSQC NMR 7c (CDCl₃)

- (a) Correlations: assignment/ $\delta_{\rm H}\,/\,\,\delta_{\rm C}\,:\,\,CH_{3}\text{-}6\,/\,0.87\,/\,14.37:\,CH_{2}\text{-}5\,/\,1.35\,/\,22.91\,\,:$ CH_2-4 / 1.35 / 30.84.
- (b) Enhanced sensitivity : CH₂-4 / 1.35 / 30.84 : CH₂-3 / 1.21 / 25.84 :

 $CH_2\text{--}2 \ / \ 1.99, \ 1.85 \ / \ 30.61$

Mass Spectra

Figure S57. Radical 10a (above), MS parent ion (M⁻). (below) simulated for C₁₉Cl₁₄F⁻

Figure S58. Radical 10b (above) MS parent ion (M⁻). (below) simulated for $C_{19}Cl_{13}F_2^{-1}$

Figure S59. Radical 7a (above) MS parent ion (M⁻). (below) simulated for C₁₉Cl₁₄(OHx)⁻

Figure S60. Radical 7b (above) MS parent ion (M⁻). (below) simulated for $C_{19}Cl_{13}(OHx)_2^{-1}$

Figure S61. Radical 7c (below) MS ion (M⁺). (above) simulated for $[C_{19}Cl_{11}(OHx)_4^+]$

MO Calculations

Calculations were performed using WebMO software. In calculating the energy as a function of the dihedral angle 2-3-4-5, this angle was fixed and the rest of the geometry optimized.

Figure S62. 2,6-Dichloromethoxybenzene: Optimised geometry (STO 6-31G*)

Dihedral angle: 2-3-4-5 90°. Selected bond angles: 1-2-3 119.4°, 2-3-4 120°, 3-4-5 116.5°, 3-6-7 119.5°.

Figure S63. 2,6-Dichloromethoxybenzene: Geometry optimised with the methoxy group held in-plane (STO 6-31G*)

Dihedral angle: 2-3-4-5 0°. Selected bond angles: 1-2-3 123.6°, 2-3-4 129.5°, 3-4-5 127.9°, 3-6-7 119.1°.

Figure S64. 2,6-Dichloromethoxybenzene: Energy (relative to the optimised geometry) as a function of the dihedral angle 2-3-4-5 (STO 6-31G*)

Figure S65. 2,3,5,6-Tetrachloromethoxybenzene: Optimised geometry (STO 6-31G*)

Dihedral angle: 2-3-4-5 90°. Selected bond angles: 1-2-3 118.8°, 2-3-4 120°, 3-4-5 116.8°, 3-6-7 118.8°, 8-9-10 118.1°, 10-11-12 118.0°.

Figure S66. 2,3,5,6-Tetrachloromethoxybenzene: Geometry optimised with the methoxy group held in-plane (STO 6-31G*)

Dihedral angle: 2-3-4-5 0°. Selected bond angles: 1-2-3 122.3°, 2-3-4 128.6°, 3-4-5 129.8°, 3-6-7 118.5°., 8-9-10 117.6°, 10-11-12 117.2°.

Figure S67. 2,3,5,6-Tetrachloromethoxybenzene: Energy (relative to the optimised geometry) as a function of the dihedral angle 2-3-4-5 (STO 6-31G*)

Figure S68. 2,6-Dichloroethoxybenzene: Optimised geometry (STO 6-31G*)

Dihedral angle: 2-3-4-5 90°. Selected bond angles: 1-2-3 119.0°, 2-3-4 120°, 3-4-5 116.8°, 3-6-7 119.5°.

Figure S69. 2,6-Dichloroethoxybenzene: Geometry optimised with the ethoxy group held in-plane (STO 6-31G*)

Dihedral angle: 2-3-4-5 0°. Selected bond angles: 1-2-3 123.2°, 2-3-4 129.6°, 3-4-5 128.6°, 3-6-7 119.1°.

Figure S70. 2,6-Dichloroethoxybenzene: Energy (relative to the optimised geometry) as a function of the dihedral angle 2-3-4-5 (STO 6-31G*)

References

[1] a) M. Ballester, J. Riera, J. Castaner, C. Badia, J. M. Monso, *J. Am. Chem. Soc.* 1971, *93*, 2215-2225; b) M. Ballester, J. Riera, J. Castaner, C. Rovira, O. Armet, *Synthesis* 1986, 64-66.

[2] O. Armet, J. Veciana, C. Rovira, J. Riera, J. Castaner, E. Molins, J. Rius, C. Miravitlles, S. Olivella, J. Brichfeus, *J. Phys. Chem.* 1987, *91*, 5608-5616.