1. ABOUT THE DATASET

Title: Copper-chloride linked cage-catenanes

Creators: Matthew Snelgrove, Natalia Sergeeva, Michaele Hardie

Organisation: University of Leeds

Rights-holder: Copyright 2024 University of Leeds

Publication Year: 2024

Description: Analytical, spectroscopic and X-ray diffraction structural data collected for complexes obtained from a combination of copper nitrate or copper chloride with ligand (\pm)-2,7,12-trimethoxy-3,8,13-*tris*(3-pyridylcarboxy)-10,15-dihydro-5*H*-tribenzo[a,d,g]cyclononene designated (\pm)-L1 and pictured below. There are four complexes designated **C1**, **C1a**, **C1b** and **C2** whose compositions are given in the table below along with data available for each. All complexes feature a tetrameric cage motif with two linked cage-catenanes shown schematically for **C1** below. **C1a** and **C1b** were obtained by solvent-exchange from **C1** and have additional dimeric copper chloride links while **C2** is a 2D polymer with three types of copper chloride links. Data for unsuccessful investigation of **C2** as a putative photocatalyst for dye degradation is also supplied.

C1 (not all terminal ligands are shown on Cu centres)

Label	Composition	Single crystal Xray structure	Powder Xray diffraction (XRD)	Elemental analysis CHN, EDX	Infrared	Thermo- gravimetric Analysis (TGA)	UV-visible spectro- scopy
C1	[Cu ₆ (L1) ₄ Cl _{10.5} (NO ₃) _{1.5} (H ₂ O) ₄]·17(DMF)	X	X	x,x	Х	X	
C1a	$[Cu_6(L1)_4Cl_{10.5}(NO_3)_{1.5}(H_2O)_2]\cdot n(toluene)$	х					
C1b	[Cu ₁₂ (L1) ₈ Cl ₂₀ (NO ₃) ₄ (H ₂ O) ₅]·(DMF)·n(toluene)	х					
C2	[Cu ₆ (L1) ₄ Cl ₁₂ (H ₂ O) ₃]·(H ₂ O)·15(DMF)	Х		х	Х		Х

Cite as: Snelgrove, Matthew; Sergeeva, Natalia and Hardie, Michaele. Dataset for 'Copper-chloride linked cage-catenanes'. University of Leeds. https://doi.org/10.5518/1585

Related publication: "Higher Assemblies of Coordination Cage-Catenanes Linked by Copper(II) Chloride Clusters: Networks and Transformations", M. P. Snelgrove, N. N. Sergeeva, M. J. Hardie, *Chemistry- A European Journal* accepted 2024, DOI: 10.1002/chem.202403692

Contact: m.j.hardie@leeds.ac.uk

2. TERMS OF USE

Copyright [2024] [University of Leeds]. Unless otherwise stated, this dataset is licensed under a Creative Commons Attribution 4.0 International Licence: https://creativecommons.org/licenses/by/4.0/.

3. PROJECT AND FUNDING INFORMATION

Title: Metal-organic frameworks and supramolecular assemblies for dyes and other inclusions

Dates: 2019-2023

Funding Organisation: Gunnell and Matthews Scholarship University of Leeds

Funding Organisation: Diamond Light Source

Grant no.: CY26879

4. CONTENTS

Folder	Filename	Contents	File format
Analysis	C1 infrared.pdf	Infrared spectra of C1	pdf
	C2 infrared.pdf	Infrared spectrum of C2	pdf
	C2_UVvisible.xlsx	UV-visible data for C2 suspension	MS Excel
	EDX_L1 and C1.pdf	Energy dispersive Xray analysis for L1 and C1	pdf
	Elemental Analysis_C1 and C2.pdf	CHN elemental analysis for C1 and C2	pdf
	MS_C1 soln.pdf	Mass spectrometry spectra of reaction mixture for C1	pdf
	MS_C2 soln.pdf	Mass spectrometry spectra of reaction mixture for C1	pdf
	TGA-sample C1 Data.xlsx	Thermogravimetric analysis data for C1	MS Excel
Structural	C1_powder_XRD.xlsx	powder X-Ray diffraction for CH ₂ Cl ₂ washed and dried C1	MS Excel
	Complex 1/complex1.cif	crystallographic information file for C1 single crystal structure	
	/complex1.fcf	structure factor file for C1 single crystal structure	All other files in
	/complex1.hkl	data file for C1 single crystal structure	this folder are
	/complex1.lst	final shelxl refinement output for C1 single crystal structure	text documents
	/complex1.res	shelxl results/instruction file for C1 single crystal structure	readable as txt
	/complex1-mask.txt	solvent mask/void calculations for C1 single crystal structure	files or MS Word,
	Complex 1a/complex1a.cif	crystallographic information file for C1a single crystal structure	WordPad etc. hkl
	/complex1a.fcf	structure factor file for C1a single crystal structure	and res files are
	/complex1a.hkl	data file for C1a single crystal structure	formatted for

	/complex1a.lst	final shelxl refinement output for C1a single crystal structure	SHELX
	/complex1a.res	shelxl results/instruction file for C1a single crystal structure	crystallographic
	/complex1a-mask.txt	solvent mask/void calculations for C1a single crystal structure	programmes
	Complex 1b/complex1b.cif	crystallographic information file for C1b single crystal structure	
	/complex1b.fcf	structure factor file for C1b single crystal structure	
	/complex1b.hkl	data file for C1b single crystal structure	
	/complex1b.lst	final shelxl refinement output for C1b single crystal structure	
	/complex1b.res	shelxl results/instruction file for C1b single crystal structure	
	/complex1b-mask.txt	solvent mask/void calculations for C1b single crystal structure	
	Complex 2/complex2.cif	crystallographic information file for C2 single crystal structure	
	/complex2.fcf	structure factor file for C2 single crystal structure	
	/complex2.hkl	data file for C2 single crystal structure	
	/complex2.lst	final shelxl refinement output for C2 single crystal structure	
	/complex2.res	shelxl results/instruction file for C2 single crystal structure	
	/complex2-mask.txt	solvent mask/void calculations for C2 single crystal structure	
Dye	C20.5mgmMB25uM_uncorrected.xlsx	UV-visible for methylene blue photodegradation with C2	All MS excel
studies	C20.5mgmMO25uM_uncorrected.xlsx	UV-visible for methyl orange photodegradation with C2	workbook files
	MB 50uM blank.xlsx	UV-visible for methylene blue photodegradation without C2	
	MO blank.xlsx	UV-visible for methylene blue photodegradation without C2	

5. METHODS

Detailed information about methods and instrumentation are available within the supplementary information for the related publication, see section 1.