Title: Data to support study of Structural Bifurcation in the High \rightarrow Low-Spin and Low \rightarrow High-Spin Phase Transitions Explains the Asymmetric Spin-Crossover in [FeL₂][BF₄]₂ (L = 2,6-Di{pyrazol-1-yl}isonicotinonitrile)

Creator(s): Ahmed Ahmed,^[1,2] Amy Hall,^[1] Hari Babu Vasili,^[1] Rafal Kulmaczewski,^[1] Alexander N. Kulak,^[1] Oscar Cespedes,^[1] Christopher M. Pask,^[1] Lee Brammer,^[3] Thomas M. Roseveare,^[3] Malcolm A. Halcrow^[1]

Organisation(s): 1. University of Leeds. 2. University of Galway. 3. University of Sheffield.

Rights-holder(s): Malcolm A. Halcrow

Publication Year: 2024

Description: The title compound exhibits a cooperative spin-transition with an unusual asymmetric hysteresis. It crystallizes as a mixture of two high-spin polymorphs HS1 and HS2, which convert simultaneously to the low-spin phases LS3 and LS4 on cooling. The HS1 and LS3 fractions increase at the expense of HS2 and LS4 upon repeated scanning, which reflects that HS2 converts to a mixture of LS3 and LS4 on cooling, and LS4 to HS1 and HS2 on rewarming.

Cite as: Ahmed, Ahmed, Hall, Amy, Vasili, Hari Babu, Kulmaczewski, Rafal, Kulak, Alexander N., Cespedes, Oscar, Pask, Christopher M., Brammer, Lee, Roseveare, Thomas M., and Halcrow, Malcolm A. (2024): Data to support study of Structural Bifurcation in the High \rightarrow Low-Spin and Low \rightarrow High-Spin Phase Transitions Explains the Asymmetric Spin-Crossover in [FeL₂][BF₄]₂ (L = 2,6-Di{pyrazol-1-yl}isonicotinonitrile). [Dataset] https://doi.org/10.5518/1564

Related publication: Ahmed, Ahmed, Hall, Amy, Vasili, Hari Babu, Kulmaczewski, Rafal, Kulak, Alexander N., Cespedes, Oscar, Pask, Christopher M., Brammer, Lee, Roseveare, Thomas M., and Halcrow, Malcolm A. (2024): Structural Bifurcation in the High \rightarrow Low-Spin and Low \rightarrow High-Spin Phase Transitions Explains the Asymmetric Spin-Crossover in [FeL₂][BF₄]₂ (L = 2,6-Di{pyrazol-1-yl}isonicotinonitrile). *Angewandte Chemie International Edition*, doi: 10.1002/anie.202416924

Contact: m.a.halcrow@leeds.ac.uk

2. TERMS OF USE

Copyright 2024 Malcolm A. Halcrow. This dataset is licensed under a Creative Commons Attribution 4.0 International Licence: https://creativecommons.org/licenses/by/4.0/.

3. PROJECT AND FUNDING INFORMATION

Title: Understanding and Engineering Function in Switchable Molecular Crystals Dates: 2013-2018 Funding organisation: EPSRC Grant no.: EP/K012576/1 Title: Quantifying the Dynamic Response in Metal-Organic Frameworks (MOFs): A Platform for Tuning Chemical Space in Porous Materials Dates: 2021-2024 Funding organisation: EPSRC Grant no.: EP/T034068/1

Title: Station I11 Rapid Access Service Dates: 2024 Funding organisation: Diamond Light Source Grant no.: CY37697

This work was also funded by the University of Leeds.

4. CONTENTS

The dataset contains data for this study:

Elemental microanalyses (microanalysis.zip).

¹H and ¹³C spectra of L, and a paramagnetic ¹H NMR spectrum of the complex (raw and processed data – *NMR*.zip).

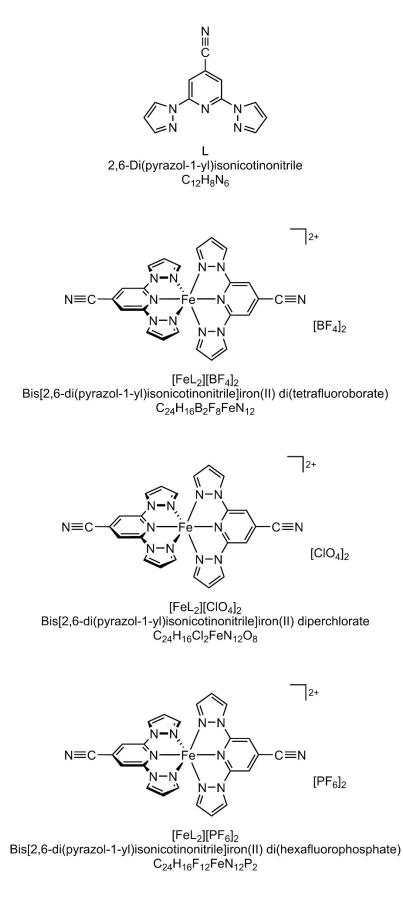
Infra-red spectra of the ligand and complexes (IR.zip)

X-ray powder diffraction data (measured and simulated – *XRPD*.zip).

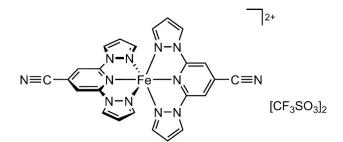
Solid state magnetic susceptibility measurements (raw and processed data – SQUID.zip).

Differential scanning calorimetry data – (DSC.zip).

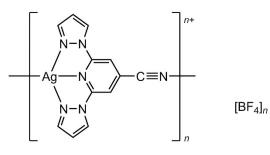
Scanning electron microscopy and optical microscopy images of [FeL₂][BF₄]₂ crystal samples (*microscopy*.zip)


X-ray crystallographic data (crystal.zip):

- Structure of L at 120 K (CCDC 2375310).
- Structure of [FeL₂][BF₄]₂, HS1 phase at 300 K (CCDC 2380639).
- Structure of [FeL₂][BF₄]₂, HS2 phase at 300 K (CCDC 2380640).
- Structure of [FeL₂][BF₄]₂, LS3 phase at 120 K (CCDC 2375311).
- Structure of [FeL₂][ClO₄]₂ at 120 K (CCDC 2375312).
- Structure of [FeL₂][PF₆]₂ at 125 K (CCDC 2375313).
- Structure of [FeL2][CF3SO3]2 at 120 K (CCDC 2375314).
- Structure of [Ag(μ-L)]BF₄ 0.5MeNO₂ at 120 K (CCDC 2375315).


5. METHODS

Full details are provided in the related publication, listed above.


Compounds referred to in this dataset

Compounds referred to in this dataset (continued)

$$\label{eq:FeL2} \begin{split} & [\text{FeL}_2][\text{CF}_3\text{SO}_3]_2\\ \text{Bis}[2,6\text{-di}(pyrazol\text{-}1\text{-}yl)\text{isonicotinonitrile}]\text{iron}(II) \ \text{di}(\text{trifluoromethanesulfonate})\\ & C_{26}H_{16}F_6\text{FeN}_{12}O_6S_2 \end{split}$$

 $\label{eq:cateron} \begin{array}{c} [Ag(\mu\text{-}L)]BF_4\\ Cateroa\mathcate{-}Cateroa\mathcate{-}[2,6\mathcate{-}di(pyrazol\mathcate{-}1\mathcate{-}yl)isonicotinonitrile]silver(I) tetrafluoroborate\\ C_{12}H_8AgBF_4N_6 \end{array}$