Supporting Information 2 for:

Automated Purification of DNA Origami with SPRI Beads

Chalmers Chau^{1,2} *_‡, Gayathri Mohanan^{1,2}_‡, Iain Macaulay^{3,4}, Paolo Actis^{1,2}, Christoph Wälti^{1,2} *

¹ School of Electronic and Electrical Engineering, University of Leeds, LS2 9JT, UK

² Bragg Centre for Materials Research, University of Leeds, LS2 9JT, UK

³ Earlham Institute, Norwich Research Park, Norwich, NR1 7UZ, UK

⁴ School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK

[‡] These authors contribute equally.

* Corresponding: <u>c.c.chau@leeds.ac.uk;</u> <u>c.walti@leeds.ac.uk;</u>

Intact origami counting

Throughout this section, for origamis that are counted as intact, a black number will be used. For origamis that are counted as damaged, a red number will be used.

Below shows an AFM image as an example:

In this example, a total of 17 intact origamis and 4 damaged origamis.

S-400 HR

Images below were used to quantify the number of intact origamis purified using S-400 HR spin column.

SPRI - 0.8X ratio

Images below were used to quantify the number of intact origamis purified using SPRI at 0.8X ratio column.

MWCO – 1

Images below were used to quantify the number of intact origamis purified using 100 kDa MWCO – 1 concentrator.

MWCO – 2

Images below were used to quantify the number of intact origamis purified using 100 kDa MWCO – 2 concentrator.

Ethanol Precipitation

Images below were used to quantify the number of intact origamis purified using ethanol precipitation.

PEG precipitation

Images below were used to quantify the number of intact origamis purified using PEG precipitation.

Phase separation

Images below were used to quantify the number of intact origamis purified using phase separation method.

Size Exclusion Chromatography

Images below were used to quantify the number of intact origamis purified using size exclusion chromatography.

Height Sensor

200.0 nm

2.7<u>n</u>m

-1.6 nm

Height Sensor

200.0 nm

Height Sensor

200.0 nm

Intact CRP functionalised DNA origami count

Throughout this document, for origamis that are counted as intact, a green circle will be used. For origamis that are counted as damaged, a red circle will be used. For origamis that are intact but no CRP, a blue circle will be used.

Below shows an AFM image as an example:

Green – CRP bound origami – 11 Blue – intact but no CRP - 9 Red – deformed (not considered in counting) - 10

In this example, a total of 11 intact origamis with CRP, 9 intact origamis and 10 damaged origamis.

SPRI cleaned DNA origamis

Green – CRP bound origami – 11 Blue – intact but no CRP - 9 Red – deformed (not considered in counting) - 10

220.0 nm

Green – CRP bound origami – 12 Blue – intact but no CRP - 4 Red – deformed (not considered in counting) - 6

220.0 nm

Green – CRP bound origami – 6 Blue – intact but no CRP - 22 Red – deformed (not considered in counting) - 16

210.0 nm

Green – CRP bound origami – 4 Blue – intact but no CRP - 7 Red – deformed (not considered in counting) – 1

210.0 nm

Green – CRP bound origami – 3 Blue – intact but no CRP - 7 Red – deformed (not considered in counting) – 5

210.0 nm

Green – CRP bound origami – 9 Blue – intact but no CRP - 3 Red – deformed (not considered in counting) – 1

210.0 nm